Transistor count
Number of transistors in a device
The transistor count is the number of transistors in an electronic device (typically on a single substrate or silicon die ). It is the most common measure of integrated circuit complexity (although the majority of transistors in modern microprocessors are contained in cache memories , which consist mostly of the same memory cell circuits replicated many times). The rate at which MOS transistor counts have increased generally follows Moore's law , which observes that transistor count doubles approximately every two years. However, being directly proportional to the area of a die, transistor count does not represent how advanced the corresponding manufacturing technology is. A better indication of this is transistor density which is the ratio of a semiconductor's transistor count to its die area.
Records
As of 2023[update] , the highest transistor count in flash memory is Micron 's 2 terabyte (3D-stacked ) 16-die, 232-layer V-NAND flash memory chip , with 5.3 trillion floating-gate MOSFETs (3 bits per transistor ).
The highest transistor count in a single chip processor as of 2020[update] is that of the deep learning processor Wafer Scale Engine 2 by Cerebras . It has 2.6 trillion MOSFETs in 84 exposed fields (dies) on a wafer, manufactured using TSMC's 7 nm FinFET process.[ 1] [ 2] [ 3] [ 4] [ 5]
As of 2024[update] , the GPU with the highest transistor count is Nvidia 's Blackwell -based B100 accelerator, built on TSMC 's custom 4NP process node and totaling 208 billion MOSFETs.
The highest transistor count in a consumer microprocessor as of June 2023[update] is 134 billion transistors, in Apple 's ARM -based dual-die M2 Ultra SoC, which is fabricated using TSMC 's 5 nm semiconductor manufacturing process .[ 6]
Year
Component
Name
Number of MOSFETs (in trillions)
Remarks
2022
Flash memory
Micron's V-NAND module
5.3
stacked package of sixteen 232-layer 3D NAND dies
2020
any processor
Wafer Scale Engine 2
2.6
wafer-scale design of 84 exposed fields (dies)
2024
GPU
Nvidia B100
0.208
Uses two reticle limit dies, with 104 billion transistors each, joined together and acting as a single large monolithic piece of silicon
2023
microprocessor (commercial)
M2 Ultra
0.134
SoC using two dies joined together with a high-speed bridge
2020
DLP
Colossus Mk2 GC200
0.059
An IPU[clarification needed ] in contrast to CPU and GPU
In terms of computer systems that consist of numerous integrated circuits, the supercomputer with the highest transistor count as of 2016[update] was the Chinese-designed Sunway TaihuLight , which has for all CPUs/nodes combined "about 400 trillion transistors in the processing part of the hardware" and "the DRAM includes about 12 quadrillion transistors, and that's about 97 percent of all the transistors."[ 7] To compare, the smallest computer , as of 2018[update] dwarfed by a grain of rice, had on the order of 100,000 transistors. Early experimental solid-state computers had as few as 130 transistors but used large amounts of diode logic . The first carbon nanotube computer had 178 transistors and was a 1-bit one-instruction set computer , while a later one is 16-bit (its instruction set is 32-bit RISC-V though).
Ionic transistor chips ("water-based" analog limited processor), have up to hundreds of such transistors.[ 8]
Estimates of the total numbers of transistors manufactured:
Up to 2014: 2.9× 1021
Up to 2018: 1.3× 1022 [ 9] [ 10]
Transistor count
Plot of MOS transistor counts for microprocessors against dates of introduction. The curve shows counts doubling every two years, per Moore's law .
Microprocessors
A microprocessor incorporates the functions of a computer's central processing unit on a single integrated circuit . It is a multi-purpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output.
The development of MOS integrated circuit technology in the 1960s led to the development of the first microprocessors.[ 11] The 20-bit MP944 , developed by Garrett AiResearch for the U.S. Navy 's F-14 Tomcat fighter in 1970, is considered by its designer Ray Holt to be the first microprocessor.[ 12] It was a multi-chip microprocessor, fabricated on six MOS chips. However, it was classified by the Navy until 1998. The 4-bit Intel 4004 , released in 1971, was the first single-chip microprocessor.
Modern microprocessors typically include on-chip cache memories . The number of transistors used for these cache memories typically far exceeds the number of transistors used to implement the logic of the microprocessor (that is, excluding the cache). For example, the last DEC Alpha chip uses 90% of its transistors for cache.[ 13]
Processor
Transistor count
Year
Designer
Process (nm )
Area (mm 2 )
Transistor density (tr./mm2 )
MP944 (20-bit, 6-chip, 28 chips total)
74,442 (5,360 excl. ROM & RAM)[ 14] [ 15]
1970[ 12] [ a]
Garrett AiResearch
?
?
?
Intel 4004 (4-bit, 16-pin)
2,250
1971
Intel
10,000 nm
12 mm2
188
TMX 1795 (8-bit, 24-pin)
3,078[ 16]
1971
Texas Instruments
?
30.64 mm2
100.5
Intel 8008 (8-bit, 18-pin)
3,500
1972
Intel
10,000 nm
14 mm2
250
NEC μCOM-4 (4-bit, 42-pin)
2,500[ 17] [ 18]
1973
NEC
7,500 nm[ 19]
?
?
Toshiba TLCS-12 (12-bit)
11,000+[ 20]
1973
Toshiba
6,000 nm
32.45 mm2
340+
Intel 4040 (4-bit, 16-pin)
3,000
1974
Intel
10,000 nm
12 mm2
250
Motorola 6800 (8-bit, 40-pin)
4,100
1974
Motorola
6,000 nm
16 mm2
256
Intel 8080 (8-bit, 40-pin)
6,000
1974
Intel
6,000 nm
20 mm2
300
TMS 1000 (4-bit, 28-pin)
8,000[ b]
1974[ 21]
Texas Instruments
8,000 nm
11 mm2
730
MOS Technology 6502 (8-bit, 40-pin)
4,528[ c] [ 22]
1975
MOS Technology
8,000 nm
21 mm2
216
Intersil IM6100 (12-bit, 40-pin; clone of PDP-8 )
4,000
1975
Intersil
?
?
?
CDP 1801 (8-bit, 2-chip, 40-pin)
5,000
1975
RCA
?
?
?
RCA 1802 (8-bit, 40-pin)
5,000
1976
RCA
5,000 nm
27 mm2
185
Zilog Z80 (8-bit, 4-bit ALU , 40-pin)
8,500[ d]
1976
Zilog
4,000 nm
18 mm2
470
Intel 8085 (8-bit, 40-pin)
6,500
1976
Intel
3,000 nm
20 mm2
325
TMS9900 (16-bit)
8,000
1976
Texas Instruments
?
?
?
Bellmac-8 (8-bit)
7,000
1977
Bell Labs
5,000 nm
?
?
Motorola 6809 (8-bit with some 16-bit features , 40-pin)
9,000
1978
Motorola
5,000 nm
21 mm2
430
Intel 8086 (16-bit, 40-pin)
29,000[ 23]
1978
Intel
3,000 nm
33 mm2
880
Zilog Z8000 (16-bit)
17,500[ 24]
1979
Zilog
?
?
?
Intel 8088 (16-bit, 8-bit data bus)
29,000
1979
Intel
3,000 nm
33 mm2
880
Motorola 68000 (16/32-bit, 32-bit registers, 16-bit ALU )
68,000[ 25]
1979
Motorola
3,500 nm
44 mm2
1,550
Intel 8051 (8-bit, 40-pin)
50,000
1980
Intel
?
?
?
WDC 65C02
11,500[ 26]
1981
WDC
3,000 nm
6 mm2
1,920
ROMP (32-bit)
45,000
1981
IBM
2,000 nm
58.52 mm2
770
Intel 80186 (16-bit, 68-pin)
55,000
1982
Intel
3,000 nm
60 mm2
920
Intel 80286 (16-bit, 68-pin)
134,000
1982
Intel
1,500 nm
49 mm2
2,730
WDC 65C816 (8/16-bit)
22,000[ 27]
1983
WDC
3,000 nm[ 28]
9 mm2
2,400
NEC V20
63,000
1984
NEC
?
?
?
Motorola 68020 (32-bit; 114 pins used)
190,000[ 29]
1984
Motorola
2,000 nm
85 mm2
2,200
Intel 80386 (32-bit, 132-pin; no cache)
275,000
1985
Intel
1,500 nm
104 mm2
2,640
ARM 1 (32-bit; no cache)
25,000[ 29]
1985
Acorn
3,000 nm
50 mm2
500
Novix NC4016 (16-bit)
16,000[ 30]
1985[ 31]
Harris Corporation
3,000 nm[ 32]
?
?
SPARC MB86900 (32-bit; no cache)
110,000[ 33]
1986
Fujitsu
1,200 nm
?
?
NEC V60 [ 34] (32-bit; no cache)
375,000
1986
NEC
1,500 nm
?
?
ARM 2 (32-bit, 84-pin; no cache)
27,000[ 35] [ 29]
1986
Acorn
2,000 nm
30.25 mm2
890
Z80000 (32-bit; very small cache)
91,000
1986
Zilog
?
?
?
NEC V70 [ 34] (32-bit; no cache)
385,000
1987
NEC
1,500 nm
?
?
Hitachi Gmicro/200 [ 36]
730,000
1987
Hitachi
1,000 nm
?
?
Motorola 68030 (32-bit, very small caches)
273,000
1987
Motorola
800 nm
102 mm2
2,680
TI Explorer 's 32-bit Lisp machine chip
553,000[ 37]
1987
Texas Instruments
2,000 nm[ 38]
?
?
DEC WRL MultiTitan
180,000[ 39]
1988
DEC WRL
1,500 nm
61 mm2
2,950
Intel i960 (32-bit, 33-bit memory subsystem , no cache)
250,000[ 40]
1988
Intel
1,500 nm[ 41]
?
?
Intel i960CA (32-bit, cache)
600,000[ 41]
1989
Intel
800 nm
143 mm2
4,200
Intel i860 (32/64-bit, 128-bit SIMD , cache, VLIW )
1,000,000[ 42]
1989
Intel
?
?
?
Intel 80486 (32-bit, 8 KB cache)
1,180,235
1989
Intel
1,000 nm
173 mm2
6,822
ARM 3 (32-bit, 4 KB cache)
310,000
1989
Acorn
1,500 nm
87 mm2
3,600
POWER1 (9-chip module, 72 kB of cache)
6,900,000[ 43]
1990
IBM
1,000 nm
1,283.61 mm2
5,375
Motorola 68040 (32-bit, 8 KB caches)
1,200,000
1990
Motorola
650 nm
152 mm2
7,900
R4000 (64-bit, 16 KB of caches)
1,350,000
1991
MIPS
1,000 nm
213 mm2
6,340
ARM 6 (32-bit, no cache for this 60 variant)
35,000
1991
ARM
800 nm
?
?
Hitachi SH-1 (32-bit, no cache)
600,000[ 44]
1992[ 45]
Hitachi
800 nm
100 mm2
6,000
Intel i960CF (32-bit, cache)
900,000[ 41]
1992
Intel
?
125 mm2
7,200
Alpha 21064 (64-bit, 290-pin; 16 KB of caches)
1,680,000
1992
DEC
750 nm
233.52 mm2
7,190
Hitachi HARP-1 (32-bit, cache)
2,800,000[ 46]
1993
Hitachi
500 nm
267 mm2
10,500
Pentium (32-bit, 16 KB of caches)
3,100,000
1993
Intel
800 nm
294 mm2
10,500
POWER2 (8-chip module, 288 kB of cache)
23,037,000[ 47]
1993
IBM
720 nm
1,217.39 mm2
18,923
ARM700 (32-bit; 8 KB cache)
578,977[ 48]
1994
ARM
700 nm
68.51 mm2
8,451
MuP21 (21-bit,[ 49] 40-pin; includes video )
7,000[ 50]
1994
Offete Enterprises
1,200 nm
?
?
Motorola 68060 (32-bit, 16 KB of caches)
2,500,000
1994
Motorola
600 nm
218 mm2
11,500
PowerPC 601 (32-bit, 32 KB of caches)
2,800,000[ 51]
1994
Apple, IBM, Motorola
600 nm
121 mm2
23,000
PowerPC 603 (32-bit, 16 KB of caches)
1,600,000[ 52]
1994
Apple, IBM, Motorola
500 nm
84.76 mm2
18,900
PowerPC 603e (32-bit, 32 KB of caches)
2,600,000[ 53]
1995
Apple, IBM, Motorola
500 nm
98 mm2
26,500
Alpha 21164 EV5 (64-bit, 112 kB cache)
9,300,000[ 54]
1995
DEC
500 nm
298.65 mm2
31,140
SA-110 (32-bit, 32 KB of caches)
2,500,000[ 29]
1995
Acorn, DEC, Apple
350 nm
50 mm2
50,000
Pentium Pro (32-bit, 16 KB of caches;[ 55] L2 cache on-package, but on separate die)
5,500,000[ 56]
1995
Intel
500 nm
307 mm2
18,000
PA-8000 64-bit, no cache
3,800,000[ 57]
1995
HP
500 nm
337.69 mm2
11,300
Alpha 21164A EV56 (64-bit, 112 kB cache)
9,660,000[ 58]
1996
DEC
350 nm
208.8 mm2
46,260
AMD K5 (32-bit, caches)
4,300,000
1996
AMD
500 nm
251 mm2
17,000
Pentium II Klamath (32-bit, 64-bit SIMD , caches)
7,500,000
1997
Intel
350 nm
195 mm2
39,000
AMD K6 (32-bit, caches)
8,800,000
1997
AMD
350 nm
162 mm2
54,000
F21 (21-bit; includes e.g. video )
15,000
1997[ 50]
Offete Enterprises
?
?
?
AVR (8-bit, 40-pin; w/memory)
140,000 (48,000 excl. memory [ 59] )
1997
Nordic VLSI /Atmel
?
?
?
Pentium II Deschutes (32-bit, large cache)
7,500,000
1998
Intel
250 nm
113 mm2
66,000
Alpha 21264 EV6 (64-bit)
15,200,000[ 60]
1998
DEC
350 nm
313.96 mm2
48,400
Alpha 21164PC PCA57 (64-bit, 48 kB cache)
5,700,000
1998
Samsung
280 nm
100.5 mm2
56,700
Hitachi SH-4 (32-bit, caches)[ 61]
3,200,000[ 62]
1998
Hitachi
250 nm
57.76 mm2
55,400
ARM 9TDMI (32-bit, no cache)
111,000[ 29]
1999
Acorn
350 nm
4.8 mm2
23,100
Pentium III Katmai (32-bit, 128-bit SIMD, caches)
9,500,000
1999
Intel
250 nm
128 mm2
74,000
Emotion Engine (64-bit, 128-bit SIMD , cache)
10,500,000[ 63] – 13,500,000[ 64]
1999
Sony , Toshiba
250 nm
239.7 mm2 [ 63]
43,800 – 56,300
Pentium II Mobile Dixon (32-bit, caches)
27,400,000
1999
Intel
180 nm
180 mm2
152,000
AMD K6-III (32-bit, caches)
21,300,000
1999
AMD
250 nm
118 mm2
181,000
AMD K7 (32-bit, caches)
22,000,000
1999
AMD
250 nm
184 mm2
120,000
Gekko (32-bit, large cache)
21,000,000[ 65]
2000
IBM, Nintendo
180 nm
43 mm2
490,000 (check)
Pentium III Coppermine (32-bit, large cache)
21,000,000
2000
Intel
180 nm
80 mm2
263,000
Pentium 4 Willamette (32-bit, large cache)
42,000,000
2000
Intel
180 nm
217 mm2
194,000
SPARC64 V (64-bit, large cache)
191,000,000[ 66]
2001
Fujitsu
130 nm [ 67]
290 mm2
659,000
Pentium III Tualatin (32-bit, large cache)
45,000,000
2001
Intel
130 nm
81 mm2
556,000
Pentium 4 Northwood (32-bit, large cache)
55,000,000
2002
Intel
130 nm
145 mm2
379,000
Itanium 2 McKinley (64-bit, large cache)
220,000,000
2002
Intel
180 nm
421 mm2
523,000
Alpha 21364 (64-bit, 946-pin, SIMD, very large caches)
152,000,000[ 13]
2003
DEC
180 nm
397 mm2
383,000
AMD K7 Barton (32-bit, large cache)
54,300,000
2003
AMD
130 nm
101 mm2
538,000
AMD K8 (64-bit, large cache)
105,900,000
2003
AMD
130 nm
193 mm2
548,700
Pentium M Banias (32-bit)
77,000,000[ 68]
2003
Intel
130 nm
83 mm2
928,000
Itanium 2 Madison 6M (64-bit)
410,000,000
2003
Intel
130 nm
374 mm2
1,096,000
PlayStation 2 single chip (CPU + GPU)
53,500,000[ 69]
2003[ 70]
Sony, Toshiba
90 nm[ 71] 130 nm[ 72] [ 73]
86 mm2
622,100
Pentium 4 Prescott (32-bit, large cache)
112,000,000
2004
Intel
90 nm
110 mm2
1,018,000
Pentium M Dothan (32-bit)
144,000,000[ 74]
2004
Intel
90 nm
87 mm2
1,655,000
SPARC64 V+ (64-bit, large cache)
400,000,000[ 75]
2004
Fujitsu
90 nm
294 mm2
1,360,000
Itanium 2 (64-bit;9 MB cache)
592,000,000
2004
Intel
130 nm
432 mm2
1,370,000
Pentium 4 Prescott-2M (32-bit, large cache)
169,000,000
2005
Intel
90 nm
143 mm2
1,182,000
Pentium D Smithfield (64-bit, large cache)
228,000,000
2005
Intel
90 nm
206 mm2
1,107,000
Xenon (64-bit, 128-bit SIMD, large cache)
165,000,000
2005
IBM
90 nm
?
?
Cell (32-bit, cache)
250,000,000[ 76]
2005
Sony, IBM, Toshiba
90 nm
221 mm2
1,131,000
Pentium 4 Cedar Mill (32-bit, large cache)
184,000,000
2006
Intel
65 nm
90 mm2
2,044,000
Pentium D Presler (64-bit, large cache)
362,000,000 [ 77]
2006
Intel
65 nm
162 mm2
2,235,000
Core 2 Duo Conroe (dual-core 64-bit, large caches)
291,000,000
2006
Intel
65 nm
143 mm2
2,035,000
Dual-core Itanium 2 (64-bit, SIMD , large caches)
1,700,000,000[ 78]
2006
Intel
90 nm
596 mm2
2,852,000
AMD K10 quad-core 2M L3 (64-bit, large caches)
463,000,000[ 79]
2007
AMD
65 nm
283 mm2
1,636,000
ARM Cortex-A9 (32-bit, (optional) SIMD , caches)
26,000,000[ 80]
2007
ARM
45 nm
31 mm2
839,000
Core 2 Duo Wolfdale (dual-core 64-bit, SIMD , caches)
411,000,000
2007
Intel
45 nm
107 mm2
3,841,000
POWER6 (64-bit, large caches)
789,000,000
2007
IBM
65 nm
341 mm2
2,314,000
Core 2 Duo Allendale (dual-core 64-bit, SIMD , large caches)
169,000,000
2007
Intel
65 nm
111 mm2
1,523,000
Uniphier
250,000,000[ 81]
2007
Matsushita
45 nm
?
?
SPARC64 VI (64-bit, SIMD , large caches)
540,000,000
2007[ 82]
Fujitsu
90 nm
421 mm2
1,283,000
Core 2 Duo Wolfdale 3M (dual-core 64-bit, SIMD , large caches)
230,000,000
2008
Intel
45 nm
83 mm2
2,771,000
Core i7 (quad-core 64-bit, SIMD , large caches)
731,000,000
2008
Intel
45 nm
263 mm2
2,779,000
AMD K10 quad-core 6M L3 (64-bit, SIMD , large caches)
758,000,000[ 79]
2008
AMD
45 nm
258 mm2
2,938,000
Atom (32-bit, large cache)
47,000,000
2008
Intel
45 nm
24 mm2
1,958,000
SPARC64 VII (64-bit, SIMD , large caches)
600,000,000
2008[ 83]
Fujitsu
65 nm
445 mm2
1,348,000
Six-core Xeon 7400 (64-bit, SIMD , large caches)
1,900,000,000
2008
Intel
45 nm
503 mm2
3,777,000
Six-core Opteron 2400 (64-bit, SIMD , large caches)
904,000,000
2009
AMD
45 nm
346 mm2
2,613,000
SPARC64 VIIIfx (64-bit, SIMD , large caches)
760,000,000[ 84]
2009
Fujitsu
45 nm
513 mm2
1,481,000
Atom (Pineview ) 64-bit, 1-core, 512 kB L2 cache
123,000,000[ 85]
2010
Intel
45 nm
66 mm2
1,864,000
Atom (Pineview ) 64-bit, 2-core, 1 MB L2 cache
176,000,000[ 86]
2010
Intel
45 nm
87 mm2
2,023,000
SPARC T3 (16-core 64-bit, SIMD , large caches)
1,000,000,000[ 87]
2010
Sun /Oracle
40 nm
377 mm2
2,653,000
Six-core Core i7 (Gulftown)
1,170,000,000
2010
Intel
32 nm
240 mm2
4,875,000
POWER7 32M L3 (8-core 64-bit, SIMD , large caches)
1,200,000,000
2010
IBM
45 nm
567 mm2
2,116,000
Quad-core z196 [ 88] (64-bit, very large caches)
1,400,000,000
2010
IBM
45 nm
512 mm2
2,734,000
Quad-core Itanium Tukwila (64-bit, SIMD , large caches)
2,000,000,000[ 89]
2010
Intel
65 nm
699 mm2
2,861,000
Xeon Nehalem-EX (8-core 64-bit, SIMD , large caches)
2,300,000,000[ 90]
2010
Intel
45 nm
684 mm2
3,363,000
SPARC64 IXfx (64-bit, SIMD , large caches)
1,870,000,000[ 91]
2011
Fujitsu
40 nm
484 mm2
3,864,000
Quad-core + GPU Core i7 (64-bit, SIMD , large caches)
1,160,000,000
2011
Intel
32 nm
216 mm2
5,370,000
Six-core Core i7 /8-core Xeon E5 (Sandy Bridge-E/EP) (64-bit, SIMD , large caches)
2,270,000,000[ 92]
2011
Intel
32 nm
434 mm2
5,230,000
Xeon Westmere-EX (10-core 64-bit, SIMD , large caches)
2,600,000,000
2011
Intel
32 nm
512 mm2
5,078,000
Atom "Medfield" (64-bit)
432,000,000[ 93]
2012
Intel
32 nm
64 mm2
6,750,000
SPARC64 X (64-bit, SIMD , caches)
2,990,000,000[ 94]
2012
Fujitsu
28 nm
600 mm2
4,983,000
AMD Bulldozer (8-core 64-bit, SIMD , caches)
1,200,000,000[ 95]
2012
AMD
32 nm
315 mm2
3,810,000
Quad-core + GPU AMD Trinity (64-bit, SIMD , caches)
1,303,000,000
2012
AMD
32 nm
246 mm2
5,297,000
Quad-core + GPU Core i7 Ivy Bridge (64-bit, SIMD , caches)
1,400,000,000
2012
Intel
22 nm
160 mm2
8,750,000
POWER7+ (8-core 64-bit, SIMD , 80 MB L3 cache)
2,100,000,000
2012
IBM
32 nm
567 mm2
3,704,000
Six-core zEC12 (64-bit, SIMD , large caches)
2,750,000,000
2012
IBM
32 nm
597 mm2
4,606,000
Itanium Poulson (8-core 64-bit, SIMD , caches)
3,100,000,000
2012
Intel
32 nm
544 mm2
5,699,000
Xeon Phi (61-core 32-bit, 512-bit SIMD , caches)
5,000,000,000[ 96]
2012
Intel
22 nm
720 mm2
6,944,000
Apple A7 (dual-core 64/32-bit ARM64 , "mobile SoC ", SIMD , caches)
1,000,000,000
2013
Apple
28 nm
102 mm2
9,804,000
Six-core Core i7 Ivy Bridge E (64-bit, SIMD , caches)
1,860,000,000
2013
Intel
22 nm
256 mm2
7,266,000
POWER8 (12-core 64-bit, SIMD , caches)
4,200,000,000
2013
IBM
22 nm
650 mm2
6,462,000
Xbox One main SoC (64-bit, SIMD , caches)
5,000,000,000
2013
Microsoft , AMD
28 nm
363 mm2
13,770,000
Quad-core + GPU Core i7 Haswell (64-bit, SIMD , caches)
1,400,000,000[ 97]
2014
Intel
22 nm
177 mm2
7,910,000
Apple A8 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
2,000,000,000
2014
Apple
20 nm
89 mm2
22,470,000
Core i7 Haswell-E (8-core 64-bit, SIMD , caches)
2,600,000,000[ 98]
2014
Intel
22 nm
355 mm2
7,324,000
Apple A8X (tri-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
3,000,000,000[ 99]
2014
Apple
20 nm
128 mm2
23,440,000
Xeon Ivy Bridge-EX (15-core 64-bit, SIMD , caches)
4,310,000,000[ 100]
2014
Intel
22 nm
541 mm2
7,967,000
Xeon Haswell-E5 (18-core 64-bit, SIMD , caches)
5,560,000,000[ 101]
2014
Intel
22 nm
661 mm2
8,411,000
Quad-core + GPU GT2 Core i7 Skylake K (64-bit, SIMD , caches)
1,750,000,000
2015
Intel
14 nm
122 mm2
14,340,000
Dual-core + GPU Iris Core i7 Broadwell-U (64-bit, SIMD , caches)
1,900,000,000[ 102]
2015
Intel
14 nm
133 mm2
14,290,000
Apple A9 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
2,000,000,000+
2015
Apple
14 nm (Samsung )
96 mm2 (Samsung )
20,800,000+
16 nm (TSMC )
104.5 mm2 (TSMC )
19,100,000+
Apple A9X (dual core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
3,000,000,000+
2015
Apple
16 nm
143.9 mm2
20,800,000+
IBM z13 (64-bit, caches)
3,990,000,000
2015
IBM
22 nm
678 mm2
5,885,000
IBM z13 Storage Controller
7,100,000,000
2015
IBM
22 nm
678 mm2
10,472,000
SPARC M7 (32-core 64-bit, SIMD , caches)
10,000,000,000[ 103]
2015
Oracle
20 nm
?
?
Core i7 Broadwell-E (10-core 64-bit, SIMD , caches)
3,200,000,000[ 104]
2016
Intel
14 nm
246 mm2 [ 105]
13,010,000
Apple A10 Fusion (quad-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
3,300,000,000
2016
Apple
16 nm
125 mm2
26,400,000
HiSilicon Kirin 960 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
4,000,000,000[ 106]
2016
Huawei
16 nm
110.00 mm2
36,360,000
Xeon Broadwell-E5 (22-core 64-bit, SIMD , caches)
7,200,000,000[ 107]
2016
Intel
14 nm
456 mm2
15,790,000
Xeon Phi (72-core 64-bit, 512-bit SIMD , caches)
8,000,000,000
2016
Intel
14 nm
683 mm2
11,710,000
Zip CPU (32-bit, for FPGAs )
1,286 6-LUTs[ 108]
2016
Gisselquist Technology
?
?
?
Qualcomm Snapdragon 835 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
3,000,000,000[ 109] [ 110]
2016
Qualcomm
10 nm
72.3 mm2
41,490,000
Apple A11 Bionic (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
4,300,000,000
2017
Apple
10 nm
89.23 mm2
48,190,000
AMD Zen CCX (core complex unit: 4 cores, 8 MB L3 cache)
1,400,000,000[ 111]
2017
AMD
14 nm (GF 14LPP)
44 mm2
31,800,000
AMD Zeppelin SoC Ryzen (64-bit, SIMD , caches)
4,800,000,000[ 112]
2017
AMD
14 nm
192 mm2
25,000,000
AMD Ryzen 5 1600 Ryzen (64-bit, SIMD , caches)
4,800,000,000[ 113]
2017
AMD
14 nm
213 mm2
22,530,000
IBM z14 (64-bit, SIMD , caches)
6,100,000,000
2017
IBM
14 nm
696 mm2
8,764,000
IBM z14 Storage Controller (64-bit)
9,700,000,000
2017
IBM
14 nm
696 mm2
13,940,000
HiSilicon Kirin 970 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
5,500,000,000[ 114]
2017
Huawei
10 nm
96.72 mm2
56,900,000
Xbox One X (Project Scorpio) main SoC (64-bit, SIMD , caches)
7,000,000,000[ 115]
2017
Microsoft, AMD
16 nm
360 mm2 [ 115]
19,440,000
Xeon Platinum 8180 (28-core 64-bit, SIMD , caches)
8,000,000,000[ 116]
2017
Intel
14 nm
?
?
Xeon (unspecified)
7,100,000,000[ 117]
2017
Intel
14 nm
672 mm2
10,570,000
POWER9 (64-bit, SIMD , caches)
8,000,000,000
2017
IBM
14 nm
695 mm2
11,500,000
Freedom U500 Base Platform Chip (E51, 4×U54) RISC-V (64-bit, caches)
250,000,000[ 118]
2017
SiFive
28 nm
~30 mm2
8,330,000
SPARC64 XII (12-core 64-bit, SIMD , caches)
5,450,000,000[ 119]
2017
Fujitsu
20 nm
795 mm2
6,850,000
Apple A10X Fusion (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
4,300,000,000[ 120]
2017
Apple
10 nm
96.40 mm2
44,600,000
Centriq 2400 (64/32-bit, SIMD , caches)
18,000,000,000[ 121]
2017
Qualcomm
10 nm
398 mm2
45,200,000
AMD Epyc (32-core 64-bit, SIMD , caches)
19,200,000,000
2017
AMD
14 nm
768 mm2
25,000,000
Qualcomm Snapdragon 845 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
5,300,000,000[ 122]
2017
Qualcomm
10 nm
94 mm2
56,400,000
Qualcomm Snapdragon 850 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
5,300,000,000[ 123]
2017
Qualcomm
10 nm
94 mm2
56,400,000
HiSilicon Kirin 710 (octa-core ARM64 "mobile SoC", SIMD , caches)
5,500,000,000[ 124]
2018
Huawei
12 nm
?
?
Apple A12 Bionic (hexa-core ARM64 "mobile SoC", SIMD , caches)
6,900,000,000[ 125] [ 126]
2018
Apple
7 nm
83.27 mm2
82,900,000
HiSilicon Kirin 980 (octa-core ARM64 "mobile SoC", SIMD , caches)
6,900,000,000[ 127]
2018
Huawei
7 nm
74.13 mm2
93,100,000
Qualcomm Snapdragon 8cx / SCX8180 (octa-core ARM64 "mobile SoC", SIMD , caches)
8,500,000,000[ 128]
2018
Qualcomm
7 nm
112 mm2
75,900,000
Apple A12X Bionic (octa-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
10,000,000,000[ 129]
2018
Apple
7 nm
122 mm2
82,000,000
Fujitsu A64FX (64/32-bit, SIMD , caches)
8,786,000,000[ 130]
2018[ 131]
Fujitsu
7 nm
?
?
Tegra Xavier SoC (64/32-bit)
9,000,000,000[ 132]
2018
Nvidia
12 nm
350 mm2
25,700,000
Qualcomm Snapdragon 855 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
6,700,000,000[ 133]
2018
Qualcomm
7 nm
73 mm2
91,800,000
AMD Zen 2 core (0.5 MB L2 + 4 MB L3 cache)
475,000,000[ 134]
2019
AMD
7 nm
7.83 mm2
60,664,000
AMD Zen 2 CCX (core complex: 4 cores, 16 MB L3 cache)
1,900,000,000[ 134]
2019
AMD
7 nm
31.32 mm2
60,664,000
AMD Zen 2 CCD (core complex die: 8 cores, 32 MB L3 cache)
3,800,000,000[ 134]
2019
AMD
7 nm
74 mm2
51,350,000
AMD Zen 2 client I/O die
2,090,000,000[ 134]
2019
AMD
12 nm
125 mm2
16,720,000
AMD Zen 2 server I/O die
8,340,000,000[ 134]
2019
AMD
12 nm
416 mm2
20,050,000
AMD Zen 2 Renoir die
9,800,000,000[ 134]
2019
AMD
7 nm
156 mm2
62,820,000
AMD Ryzen 7 3700X (64-bit, SIMD , caches, I/O die)
5,990,000,000[ 135] [ e]
2019
AMD
7 & 12 nm (TSMC )
199 (74+125) mm2
30,100,000
HiSilicon Kirin 990 4G
8,000,000,000[ 136]
2019
Huawei
7 nm
90.00 mm2
89,000,000
Apple A13 (hexa-core 64-bit ARM64 "mobile SoC", SIMD , caches)
8,500,000,000[ 137] [ 138]
2019
Apple
7 nm
98.48 mm2
86,300,000
IBM z15 CP chip (12 cores, 256 MB L3 cache)
9,200,000,000[ 139]
2019
IBM
14 nm
696 mm2
13,220,000
IBM z15 SC chip (960 MB L4 cache)
12,200,000,000
2019
IBM
14 nm
696 mm2
17,530,000
AMD Ryzen 9 3900X (64-bit, SIMD , caches, I/O die)
9,890,000,000[ 140] [ 141]
2019
AMD
7 & 12 nm (TSMC )
273 mm2
36,230,000
HiSilicon Kirin 990 5G
10,300,000,000[ 142]
2019
Huawei
7 nm
113.31 mm2
90,900,000
AWS Graviton2 (64-bit, 64-core ARM-based, SIMD , caches)[ 143] [ 144]
30,000,000,000
2019
Amazon
7 nm
?
?
AMD Epyc Rome (64-bit, SIMD , caches)
39,540,000,000[ 140] [ 141]
2019
AMD
7 & 12 nm (TSMC )
1,008 mm2
39,226,000
Qualcomm Snapdragon 865 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD , caches)
10,300,000,000[ 145]
2019
Qualcomm
7 nm
83.54 mm2 [ 146]
123,300,000
TI Jacinto TDA4VM (ARM A72, DSP, SRAM)
3,500,000,000[ 147]
2020
Texas Instruments
16 nm
?
?
Apple A14 Bionic (hexa-core 64-bit ARM64 "mobile SoC", SIMD , caches)
11,800,000,000[ 148]
2020
Apple
5 nm
88 mm2
134,100,000
Apple M1 (octa-core 64-bit ARM64 SoC, SIMD , caches)
16,000,000,000[ 149]
2020
Apple
5 nm
119 mm2
134,500,000
HiSilicon Kirin 9000
15,300,000,000[ 150] [ 151]
2020
Huawei
5 nm
114 mm2
134,200,000
AMD Zen 3 CCX (core complex unit: 8 cores, 32 MB L3 cache)
4,080,000,000[ 152]
2020
AMD
7 nm
68 mm2
60,000,000
AMD Zen 3 CCD (core complex die)
4,150,000,000[ 152]
2020
AMD
7 nm
81 mm2
51,230,000
Core 11th gen Rocket Lake (8-core 64-bit, SIMD , large caches)
6,000,000,000+ [ 153]
2021
Intel
14 nm +++ 14 nm
276 mm2 [ 154]
37,500,000 or 21,800,000+ [ 155]
AMD Ryzen 7 5800H (64-bit, SIMD , caches, I/O and GPU)
10,700,000,000[ 156]
2021
AMD
7 nm
180 mm2
59,440,000
AMD Epyc 7763 (Milan) (64-core, 64-bit)
?
2021
AMD
7 & 12 nm (TSMC )
1,064 mm2 (8×81+416)[ 157]
?
Apple A15
15,000,000,000[ 158] [ 159]
2021
Apple
5 nm
107.68 mm2
139,300,000
Apple M1 Pro (10-core, 64-bit)
33,700,000,000[ 160]
2021
Apple
5 nm
245 mm2 [ 161]
137,600,000
Apple M1 Max (10-core, 64-bit)
57,000,000,000[ 162] [ 160]
2021
Apple
5 nm
420.2 mm2 [ 163]
135,600,000
Power10 dual-chip module (30 SMT8 cores or 60 SMT4 cores)
36,000,000,000[ 164]
2021
IBM
7 nm
1,204 mm2
29,900,000
Dimensity 9000 (ARM64 SoC)
15,300,000,000[ 165] [ 166]
2021
Mediatek
4 nm (TSMC N4)
?
?
Apple A16 (ARM64 SoC)
16,000,000,000[ 167] [ 168] [ 169]
2022
Apple
4 nm
?
?
Apple M1 Ultra (dual-chip module, 2×10 cores)
114,000,000,000[ 170] [ 171]
2022
Apple
5 nm
840.5 mm2 [ 163]
135,600,000
AMD Epyc 7773X (Milan-X) (multi-chip module, 64 cores, 768 MB L3 cache)
26,000,000,000 + Milan[ 172]
2022
AMD
7 & 12 nm (TSMC )
1,352 mm2 (Milan + 8×36)[ 172]
?
IBM Telum dual-chip module (2×8 cores, 2×256 MB cache)
45,000,000,000[ 173] [ 174]
2022
IBM
7 nm (Samsung)
1,060 mm2
42,450,000
Apple M2 (deca-core 64-bit ARM64 SoC, SIMD , caches)
20,000,000,000[ 175]
2022
Apple
5 nm
?
?
Dimensity 9200 (ARM64 SoC)
17,000,000,000[ 176] [ 177] [ 178]
2022
Mediatek
4 nm (TSMC N4P)
?
?
Qualcomm Snapdragon 8 Gen 2 (octa-core ARM64 "mobile SoC", SIMD , caches)
16,000,000,000
2022
Qualcomm
4 nm
268 mm2
59,701,492
AMD EPYC Genoa (4th gen/9004 series) 13-chip module (up to 96 cores and 384 MB (L3) + 96 MB (L2) cache)[ 179]
90,000,000,000[ 180] [ 181]
2022
AMD
5 nm (CCD) 6 nm (IOD)
1,263.34 mm2 12×72.225 (CCD) 396.64 (IOD)[ 182] [ 183]
71,240,000
HiSilicon Kirin 9000s
9,510,000,000[ 184]
2023
Huawei
7 nm
107 mm2
107,690,000
Apple M4 (deca-core 64-bit ARM64 SoC, SIMD , caches)
28,000,000,000[ 185]
2024
Apple
3 nm
?
?
Apple M3 (octa-core 64-bit ARM64 SoC, SIMD , caches)
25,000,000,000[ 186]
2023
Apple
3 nm
?
?
Apple M3 Pro (dodeca-core 64-bit ARM64 SoC, SIMD , caches)
37,000,000,000[ 186]
2023
Apple
3 nm
?
?
Apple M3 Max (16-core 64-bit ARM64 SoC, SIMD , caches)
92,000,000,000[ 186]
2023
Apple
3 nm
?
?
Apple A17
19,000,000,000[ 187]
2023
Apple
3 nm
103.8 mm2
183,044,315
Sapphire Rapids quad-chip module (up to 60 cores and 112.5 MB of cache)[ 188]
44,000,000,000– 48,000,000,000[ 189]
2023
Intel
10 nm ESF (Intel 7)
1,600 mm2
27,500,000– 30,000,000
Apple M2 Pro (12-core 64-bit ARM64 SoC, SIMD , caches)
40,000,000,000[ 190]
2023
Apple
5 nm
?
?
Apple M2 Max (12-core 64-bit ARM64 SoC, SIMD , caches)
67,000,000,000[ 190]
2023
Apple
5 nm
?
?
Apple M2 Ultra (two M2 Max dies)
134,000,000,000[ 6]
2023
Apple
5 nm
?
?
AMD Epyc Bergamo (4th gen/97X4 series) 9-chip module (up to 128 cores and 256 MB (L3) + 128 MB (L2) cache)
82,000,000,000[ 191]
2023
AMD
5 nm (CCD) 6 nm (IOD)
?
?
AMD Instinct MI300A (multi-chip module, 24 cores, 128 GB GPU memory + 256 MB (LLC/L3) cache)
146,000,000,000[ 192] [ 193]
2023
AMD
5 nm (CCD, GCD) 6 nm (IOD)
1,017 mm2
144,000,000
Processor
Transistor count
Year
Designer
Process (nm )
Area (mm 2 )
Transistor density (tr./mm2 )
GPUs
A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display.
The designer refers to the technology company that designs the logic of the integrated circuit chip (such as Nvidia and AMD ). The manufacturer ("Fab.") refers to the semiconductor company that fabricates the chip using its semiconductor manufacturing process at a foundry (such as TSMC and Samsung Semiconductor ). The transistor count in a chip is dependent on a manufacturer's fabrication process, with smaller semiconductor nodes typically enabling higher transistor density and thus higher transistor counts.
The random-access memory (RAM) that comes with GPUs (such as VRAM , SGRAM or HBM ) greatly increases the total transistor count, with the memory typically accounting for the majority of transistors in a graphics card . For example, Nvidia 's Tesla P100 has 15 billion FinFETs (16 nm ) in the GPU in addition to 16 GB of HBM2 memory, totaling about 150 billion MOSFETs on the graphics card.[ 194] The following table does not include the memory. For memory transistor counts, see the Memory section below.
Processor
Transistor count
Year
Designer(s)
Fab(s)
Process
Area
Transistor density (tr./mm2 )
Ref
μPD7220 GDC
40,000
1982
NEC
NEC
5,000 nm
?
?
[ 195]
ARTC HD63484
60,000
1984
Hitachi
Hitachi
?
?
?
[ 196]
CBM Agnus
21,000
1985
Commodore
CSG
5,000 nm
?
?
[ 197] [ 198]
YM7101 VDP
100,000
1988
Yamaha , Sega
Yamaha
?
?
?
[ 199]
Tom & Jerry
750,000
1993
Flare
IBM
?
?
?
[ 199]
VDP1
1,000,000
1994
Sega
Hitachi
500 nm
?
?
[ 200]
Sony GPU
1,000,000
1994
Toshiba
LSI
500 nm
?
?
[ 201] [ 202] [ 203]
NV1
1,000,000
1995
Nvidia , Sega
SGS
500 nm
90 mm2
11,000
Reality Coprocessor
2,600,000
1996
SGI
NEC
350 nm
81 mm2
32,100
[ 204]
PowerVR
1,200,000
1996
VideoLogic
NEC
350 nm
?
?
[ 205]
Voodoo Graphics
1,000,000
1996
3dfx
TSMC
500 nm
?
?
[ 206] [ 207]
Voodoo Rush
1,000,000
1997
3dfx
TSMC
500 nm
?
?
[ 206] [ 207]
NV3
3,500,000
1997
Nvidia
SGS, TSMC
350 nm
90 mm2
38,900
[ 208] [ 209]
i740
3,500,000
1998
Intel , Real3D
Real3D
350 nm
?
?
[ 206] [ 207]
Voodoo 2
4,000,000
1998
3dfx
TSMC
350 nm
?
?
Voodoo Rush
4,000,000
1998
3dfx
TSMC
350 nm
?
?
NV4
7,000,000
1998
Nvidia
TSMC
350 nm
90 mm2
78,000
[ 206] [ 209]
PowerVR2 CLX2
10,000,000
1998
VideoLogic
NEC
250 nm
116 mm2
86,200
[ 210] [ 211] [ 212] [ 213]
PowerVR2 PMX1
6,000,000
1999
VideoLogic
NEC
250 nm
?
?
[ 214]
Rage 128
8,000,000
1999
ATI
TSMC, UMC
250 nm
70 mm2
114,000
[ 207]
Voodoo 3
8,100,000
1999
3dfx
TSMC
250 nm
?
?
[ 215]
Graphics Synthesizer
43,000,000
1999
Sony , Toshiba
Sony , Toshiba
180 nm
279 mm2
154,000
[ 65] [ 216] [ 64] [ 63]
NV5
15,000,000
1999
Nvidia
TSMC
250 nm
90 mm2
167,000
[ 207]
NV10
17,000,000
1999
Nvidia
TSMC
220 nm
111 mm2
153,000
[ 217] [ 209]
NV11
20,000,000
2000
Nvidia
TSMC
180 nm
65 mm2
308,000
[ 207]
NV15
25,000,000
2000
Nvidia
TSMC
180 nm
81 mm2
309,000
[ 207]
Voodoo 4
14,000,000
2000
3dfx
TSMC
220 nm
?
?
[ 206] [ 207]
Voodoo 5
28,000,000
2000
3dfx
TSMC
220 nm
?
?
[ 206] [ 207]
R100
30,000,000
2000
ATI
TSMC
180 nm
97 mm2
309,000
[ 207]
Flipper
51,000,000
2000
ArtX
NEC
180 nm
106 mm2
481,000
[ 65] [ 218]
PowerVR3 KYRO
14,000,000
2001
Imagination
ST
250 nm
?
?
[ 206] [ 207]
PowerVR3 KYRO II
15,000,000
2001
Imagination
ST
180 nm
NV2A
60,000,000
2001
Nvidia
TSMC
150 nm
?
?
[ 206] [ 219]
NV20
57,000,000
2001
Nvidia
TSMC
150 nm
128 mm2
445,000
[ 207]
NV25
63,000,000
2002
Nvidia
TSMC
150 nm
142 mm2
444,000
NV28
36,000,000
2002
Nvidia
TSMC
150 nm
101 mm2
356,000
NV17/18
29,000,000
2002
Nvidia
TSMC
150 nm
65 mm2
446,000
R200
60,000,000
2001
ATI
TSMC
150 nm
68 mm2
882,000
R300
107,000,000
2002
ATI
TSMC
150 nm
218 mm2
490,800
R360
117,000,000
2003
ATI
TSMC
150 nm
218 mm2
536,700
NV34
45,000,000
2003
Nvidia
TSMC
150 nm
124 mm2
363,000
NV34b
45,000,000
2004
Nvidia
TSMC
140 nm
91 mm2
495,000
NV30
125,000,000
2003
Nvidia
TSMC
130 nm
199 mm2
628,000
NV31
80,000,000
2003
Nvidia
TSMC
130 nm
121 mm2
661,000
NV35/38
135,000,000
2003
Nvidia
TSMC
130 nm
207 mm2
652,000
NV36
82,000,000
2003
Nvidia
IBM
130 nm
133 mm2
617,000
R480
160,000,000
2004
ATI
TSMC
130 nm
297 mm2
538,700
NV40
222,000,000
2004
Nvidia
IBM
130 nm
305 mm2
727,900
NV44
75,000,000
2004
Nvidia
IBM
130 nm
110 mm2
681,800
NV41
222,000,000
2005
Nvidia
TSMC
110 nm
225 mm2
986,700
[ 207]
NV42
198,000,000
2005
Nvidia
TSMC
110 nm
222 mm2
891,900
NV43
146,000,000
2005
Nvidia
TSMC
110 nm
154 mm2
948,100
G70
303,000,000
2005
Nvidia
TSMC, Chartered
110 nm
333 mm2
909,900
Xenos
232,000,000
2005
ATI
TSMC
90 nm
182 mm2
1,275,000
[ 220] [ 221]
RSX Reality Synthesizer
300,000,000
2005
Nvidia, Sony
Sony
90 nm
186 mm2
1,613,000
[ 222] [ 223]
R520
321,000,000
2005
ATI
TSMC
90 nm
288 mm2
1,115,000
[ 207]
RV530
157,000,000
2005
ATI
TSMC
90 nm
150 mm2
1,047,000
RV515
107,000,000
2005
ATI
TSMC
90 nm
100 mm2
1,070,000
R580
384,000,000
2006
ATI
TSMC
90 nm
352 mm2
1,091,000
G71
278,000,000
2006
Nvidia
TSMC
90 nm
196 mm2
1,418,000
G72
112,000,000
2006
Nvidia
TSMC
90 nm
81 mm2
1,383,000
G73
177,000,000
2006
Nvidia
TSMC
90 nm
125 mm2
1,416,000
G80
681,000,000
2006
Nvidia
TSMC
90 nm
480 mm2
1,419,000
G86 Tesla
210,000,000
2007
Nvidia
TSMC
80 nm
127 mm2
1,654,000
G84 Tesla
289,000,000
2007
Nvidia
TSMC
80 nm
169 mm2
1,710,000
RV560
330,000,000
2006
ATI
TSMC
80 nm
230 mm2
1,435,000
R600
700,000,000
2007
ATI
TSMC
80 nm
420 mm2
1,667,000
RV610
180,000,000
2007
ATI
TSMC
65 nm
85 mm2
2,118,000
[ 207]
RV630
390,000,000
2007
ATI
TSMC
65 nm
153 mm2
2,549,000
G92
754,000,000
2007
Nvidia
TSMC, UMC
65 nm
324 mm2
2,327,000
G94 Tesla
505,000,000
2008
Nvidia
TSMC
65 nm
240 mm2
2,104,000
G96 Tesla
314,000,000
2008
Nvidia
TSMC
65 nm
144 mm2
2,181,000
G98 Tesla
210,000,000
2008
Nvidia
TSMC
65 nm
86 mm2
2,442,000
GT200 [ 224]
1,400,000,000
2008
Nvidia
TSMC
65 nm
576 mm2
2,431,000
RV620
181,000,000
2008
ATI
TSMC
55 nm
67 mm2
2,701,000
[ 207]
RV635
378,000,000
2008
ATI
TSMC
55 nm
135 mm2
2,800,000
RV710
242,000,000
2008
ATI
TSMC
55 nm
73 mm2
3,315,000
RV730
514,000,000
2008
ATI
TSMC
55 nm
146 mm2
3,521,000
RV670
666,000,000
2008
ATI
TSMC
55 nm
192 mm2
3,469,000
RV770
956,000,000
2008
ATI
TSMC
55 nm
256 mm2
3,734,000
RV790
959,000,000
2008
ATI
TSMC
55 nm
282 mm2
3,401,000
[ 225] [ 207]
G92b Tesla
754,000,000
2008
Nvidia
TSMC, UMC
55 nm
260 mm2
2,900,000
[ 207]
G94b Tesla
505,000,000
2008
Nvidia
TSMC, UMC
55 nm
196 mm2
2,577,000
G96b Tesla
314,000,000
2008
Nvidia
TSMC, UMC
55 nm
121 mm2
2,595,000
GT200b Tesla
1,400,000,000
2008
Nvidia
TSMC, UMC
55 nm
470 mm2
2,979,000
GT218 Tesla
260,000,000
2009
Nvidia
TSMC
40 nm
57 mm2
4,561,000
[ 207]
GT216 Tesla
486,000,000
2009
Nvidia
TSMC
40 nm
100 mm2
4,860,000
GT215 Tesla
727,000,000
2009
Nvidia
TSMC
40 nm
144 mm2
5,049,000
RV740
826,000,000
2009
ATI
TSMC
40 nm
137 mm2
6,029,000
Cypress RV870
2,154,000,000
2009
ATI
TSMC
40 nm
334 mm2
6,449,000
Juniper RV840
1,040,000,000
2009
ATI
TSMC
40 nm
166 mm2
6,265,000
Redwood RV830
627,000,000
2010
AMD (ATI)
TSMC
40 nm
104 mm2
6,029,000
[ 207]
Cedar RV810
292,000,000
2010
AMD
TSMC
40 nm
59 mm2
4,949,000
Cayman RV970
2,640,000,000
2010
AMD
TSMC
40 nm
389 mm2
6,789,000
Barts RV940
1,700,000,000
2010
AMD
TSMC
40 nm
255 mm2
6,667,000
Turks RV930
716,000,000
2011
AMD
TSMC
40 nm
118 mm2
6,068,000
Caicos RV910
370,000,000
2011
AMD
TSMC
40 nm
67 mm2
5,522,000
GF100 Fermi
3,200,000,000
2010
Nvidia
TSMC
40 nm
526 mm2
6,084,000
[ 226]
GF110 Fermi
3,000,000,000
2010
Nvidia
TSMC
40 nm
520 mm2
5,769,000
[ 226]
GF104 Fermi
1,950,000,000
2011
Nvidia
TSMC
40 nm
332 mm2
5,873,000
[ 207]
GF106 Fermi
1,170,000,000
2010
Nvidia
TSMC
40 nm
238 mm2
4,916,000
[ 207]
GF108 Fermi
585,000,000
2011
Nvidia
TSMC
40 nm
116 mm2
5,043,000
[ 207]
GF119 Fermi
292,000,000
2011
Nvidia
TSMC
40 nm
79 mm2
3,696,000
[ 207]
Tahiti GCN1
4,312,711,873
2011
AMD
TSMC
28 nm
365 mm2
11,820,000
[ 227]
Cape Verde GCN1
1,500,000,000
2012
AMD
TSMC
28 nm
123 mm2
12,200,000
[ 207]
Pitcairn GCN1
2,800,000,000
2012
AMD
TSMC
28 nm
212 mm2
13,210,000
[ 207]
GK110 Kepler
7,080,000,000
2012
Nvidia
TSMC
28 nm
561 mm2
12,620,000
[ 228] [ 229]
GK104 Kepler
3,540,000,000
2012
Nvidia
TSMC
28 nm
294 mm2
12,040,000
[ 230]
GK106 Kepler
2,540,000,000
2012
Nvidia
TSMC
28 nm
221 mm2
11,490,000
[ 207]
GK107 Kepler
1,270,000,000
2012
Nvidia
TSMC
28 nm
118 mm2
10,760,000
[ 207]
GK208 Kepler
1,020,000,000
2013
Nvidia
TSMC
28 nm
79 mm2
12,910,000
[ 207]
Oland GCN1
1,040,000,000
2013
AMD
TSMC
28 nm
90 mm2
11,560,000
[ 207]
Bonaire GCN2
2,080,000,000
2013
AMD
TSMC
28 nm
160 mm2
13,000,000
Durango (Xbox One )
4,800,000,000
2013
AMD
TSMC
28 nm
375 mm2
12,800,000
[ 231] [ 232]
Liverpool (PlayStation 4 )
?
2013
AMD
TSMC
28 nm
348 mm2
?
[ 233]
Hawaii GCN2
6,300,000,000
2013
AMD
TSMC
28 nm
438 mm2
14,380,000
[ 207]
GM200 Maxwell
8,000,000,000
2015
Nvidia
TSMC
28 nm
601 mm2
13,310,000
GM204 Maxwell
5,200,000,000
2014
Nvidia
TSMC
28 nm
398 mm2
13,070,000
GM206 Maxwell
2,940,000,000
2014
Nvidia
TSMC
28 nm
228 mm2
12,890,000
GM107 Maxwell
1,870,000,000
2014
Nvidia
TSMC
28 nm
148 mm2
12,640,000
Tonga GCN3
5,000,000,000
2014
AMD
TSMC, GlobalFoundries
28 nm
366 mm2
13,660,000
Fiji GCN3
8,900,000,000
2015
AMD
TSMC
28 nm
596 mm2
14,930,000
Durango 2 (Xbox One S )
5,000,000,000
2016
AMD
TSMC
16 nm
240 mm2
20,830,000
[ 234]
Neo (PlayStation 4 Pro )
5,700,000,000
2016
AMD
TSMC
16 nm
325 mm2
17,540,000
[ 235]
Ellesmere/Polaris 10 GCN4
5,700,000,000
2016
AMD
Samsung, GlobalFoundries
14 nm
232 mm2
24,570,000
[ 236]
Baffin/Polaris 11 GCN4
3,000,000,000
2016
AMD
Samsung , GlobalFoundries
14 nm
123 mm2
24,390,000
[ 207] [ 237]
Lexa/Polaris 12 GCN4
2,200,000,000
2017
AMD
Samsung, GlobalFoundries
14 nm
101 mm2
21,780,000
[ 207] [ 237]
GP100 Pascal
15,300,000,000
2016
Nvidia
TSMC, Samsung
16 nm
610 mm2
25,080,000
[ 238] [ 239]
GP102 Pascal
11,800,000,000
2016
Nvidia
TSMC, Samsung
16 nm
471 mm2
25,050,000
[ 207] [ 239]
GP104 Pascal
7,200,000,000
2016
Nvidia
TSMC
16 nm
314 mm2
22,930,000
[ 207] [ 239]
GP106 Pascal
4,400,000,000
2016
Nvidia
TSMC
16 nm
200 mm2
22,000,000
[ 207] [ 239]
GP107 Pascal
3,300,000,000
2016
Nvidia
Samsung
14 nm
132 mm2
25,000,000
[ 207] [ 239]
GP108 Pascal
1,850,000,000
2017
Nvidia
Samsung
14 nm
74 mm2
25,000,000
[ 207] [ 239]
Scorpio (Xbox One X )
6,600,000,000
2017
AMD
TSMC
16 nm
367 mm2
17,980,000
[ 231] [ 240]
Vega 10 GCN5
12,500,000,000
2017
AMD
Samsung, GlobalFoundries
14 nm
484 mm2
25,830,000
[ 241]
GV100 Volta
21,100,000,000
2017
Nvidia
TSMC
12 nm
815 mm2
25,890,000
[ 242]
TU102 Turing
18,600,000,000
2018
Nvidia
TSMC
12 nm
754 mm2
24,670,000
[ 243]
TU104 Turing
13,600,000,000
2018
Nvidia
TSMC
12 nm
545 mm2
24,950,000
TU106 Turing
10,800,000,000
2018
Nvidia
TSMC
12 nm
445 mm2
24,270,000
TU116 Turing
6,600,000,000
2019
Nvidia
TSMC
12 nm
284 mm2
23,240,000
[ 244]
TU117 Turing
4,700,000,000
2019
Nvidia
TSMC
12 nm
200 mm2
23,500,000
[ 245]
Vega 20 GCN5
13,230,000,000
2018
AMD
TSMC
7 nm
331 mm2
39,970,000
[ 207]
Navi 10 RDNA
10,300,000,000
2019
AMD
TSMC
7 nm
251 mm2
41,040,000
[ 246]
Navi 12 RDNA
?
2020
AMD
TSMC
7 nm
?
?
Navi 14 RDNA
6,400,000,000
2019
AMD
TSMC
7 nm
158 mm2
40,510,000
[ 247]
Arcturus CDNA
25,600,000,000
2020
AMD
TSMC
7 nm
750 mm2
34,100,000
[ 248]
GA100 Ampere
54,200,000,000
2020
Nvidia
TSMC
7 nm
826 mm2
65,620,000
[ 249] [ 250]
GA102 Ampere
28,300,000,000
2020
Nvidia
Samsung
8 nm
628 mm2
45,035,000
[ 251] [ 252]
GA103 Ampere
22,000,000,000
2022
Nvidia
Samsung
8 nm
496 mm2
44,400,000
[ 253]
GA104 Ampere
17,400,000,000
2020
Nvidia
Samsung
8 nm
392 mm2
44,390,000
[ 254]
GA106 Ampere
12,000,000,000
2021
Nvidia
Samsung
8 nm
276 mm2
43,480,000
[ 255]
GA107 Ampere
8,700,000,000
2021
Nvidia
Samsung
8 nm
200 mm2
43,500,000
[ 256]
Navi 21 RDNA2
26,800,000,000
2020
AMD
TSMC
7 nm
520 mm2
51,540,000
Navi 22 RDNA2
17,200,000,000
2021
AMD
TSMC
7 nm
335 mm2
51,340,000
Navi 23 RDNA2
11,060,000,000
2021
AMD
TSMC
7 nm
237 mm2
46,670,000
Navi 24 RDNA2
5,400,000,000
2022
AMD
TSMC
6 nm
107 mm2
50,470,000
Aldebaran CDNA2
58,200,000,000 (MCM )
2021
AMD
TSMC
6 nm
1448–1474 mm2 [ 257] 1480 mm2 [ 258] 1490–1580 mm2 [ 259]
39,500,000–40,200,000 39,200,000 36,800,000–39,100,000
[ 260]
GH100 Hopper
80,000,000,000
2022
Nvidia
TSMC
4 nm
814 mm2
98,280,000
[ 261]
AD102 Ada Lovelace
76,300,000,000
2022
Nvidia
TSMC
4 nm
608.4 mm2
125,411,000
[ 262]
AD103 Ada Lovelace
45,900,000,000
2022
Nvidia
TSMC
4 nm
378.6 mm2
121,240,000
[ 263]
AD104 Ada Lovelace
35,800,000,000
2022
Nvidia
TSMC
4 nm
294.5 mm2
121,560,000
[ 263]
AD106 Ada Lovelace
?
2023
Nvidia
TSMC
4 nm
190 mm2
?
[ 264] [ 265]
AD107 Ada Lovelace
?
2023
Nvidia
TSMC
4 nm
146 mm2
?
[ 264] [ 266]
Navi 31 RDNA3
57,700,000,000 (MCM) 45,400,000,000 (GCD) 6×2,050,000,000 (MCD)
2022
AMD
TSMC
5 nm (GCD) 6 nm (MCD)
531 mm2 (MCM) 306 mm2 (GCD) 6×37.5 mm2 (MCD)
109,200,000 (MCM) 132,400,000 (GCD) 54,640,000 (MCD)
[ 267] [ 268] [ 269]
Navi 32 RDNA3
28,100,000,000 (MCM)
2023
AMD
TSMC
5 nm (GCD) 6 nm (MCD)
350 mm2 (MCM) 200 mm2 (GCD) 4×37.5 mm2 (MCD)
80,200,000 (MCM)
[ 270]
Navi 33 RDNA3
13,300,000,000
2023
AMD
TSMC
6 nm
204 mm2
65,200,000
[ 271]
Aqua Vanjaram CDNA3
153,000,000,000 (MCM)
2023
AMD
TSMC
5 nm (GCD) 6 nm (MCD)
?
?
[ 272] [ 273]
GB200 Grace Blackwell
208,000,000,000
2024
Nvidia
TSMC
4 nm
?
?
[ 274]
Processor
Transistor count
Year
Designer(s)
Fab(s)
MOS process
Area
Transistor density (tr./mm2 )
Ref
FPGA
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing.
FPGA
Transistor count
Date of introduction
Designer
Manufacturer
Process
Area
Transistor density, tr./mm2
Ref
Virtex
70,000,000
1997
Xilinx
Virtex-E
200,000,000
1998
Xilinx
Virtex-II
350,000,000
2000
Xilinx
130 nm
Virtex-II PRO
430,000,000
2002
Xilinx
Virtex-4
1,000,000,000
2004
Xilinx
90 nm
Virtex-5
1,100,000,000
2006
Xilinx
TSMC
65 nm
[ 275]
Stratix IV
2,500,000,000
2008
Altera
TSMC
40 nm
[ 276]
Stratix V
3,800,000,000
2011
Altera
TSMC
28 nm
[citation needed ]
Arria 10
5,300,000,000
2014
Altera
TSMC
20 nm
[ 277]
Virtex-7 2000T
6,800,000,000
2011
Xilinx
TSMC
28 nm
[ 278]
Stratix 10 SX 2800
17,000,000,000
TBD
Intel
Intel
14 nm
560 mm2
30,400,000
[ 279] [ 280]
Virtex-Ultrascale VU440
20,000,000,000
Q1 2015
Xilinx
TSMC
20 nm
[ 281] [ 282]
Virtex-Ultrascale+ VU19P
35,000,000,000
2020
Xilinx
TSMC
16 nm
900 mm2 [ f]
38,900,000
[ 283] [ 284] [ 285]
Versal VC1902
37,000,000,000
2H 2019
Xilinx
TSMC
7 nm
[ 286] [ 287] [ 288]
Stratix 10 GX 10M
43,300,000,000
Q4 2019
Intel
Intel
14 nm
1,400 mm2 [ f]
30,930,000
[ 289] [ 290]
Versal VP1802
92,000,000,000
2021 ? [ g]
Xilinx
TSMC
7 nm
[ 291] [ 292]
Memory
Semiconductor memory is an electronic data storage device , often used as computer memory , implemented on integrated circuits . Nearly all semiconductor memories since the 1970s have used MOSFETs (MOS transistors), replacing earlier bipolar junction transistors . There are two major types of semiconductor memory: random-access memory (RAM) and non-volatile memory (NVM). In turn, there are two major RAM types: dynamic random-access memory (DRAM) and static random-access memory (SRAM), as well as two major NVM types: flash memory and read-only memory (ROM).
Typical CMOS SRAM consists of six transistors per cell. For DRAM, 1T1C, which means one transistor and one capacitor structure, is common. Capacitor charged or not[clarification needed ] is used to store 1 or 0. In flash memory, the data is stored in floating gates, and the resistance of the transistor is sensed[clarification needed ] to interpret the data stored. Depending on how fine scale the resistance could be separated[clarification needed ] , one transistor could store up to three bits , meaning eight distinctive levels of resistance possible per transistor. However, a finer scale comes with the cost of repeatability issues, and hence reliability. Typically, low grade 2-bits MLC flash is used for flash drives , so a 16 GB flash drive contains roughly 64 billion transistors.
For SRAM chips, six-transistor cells (six transistors per bit) was the standard.[ 293] DRAM chips during the early 1970s had three-transistor cells (three transistors per bit), before single-transistor cells (one transistor per bit) became standard since the era of 4 Kb DRAM in the mid-1970s.[ 294] [ 295] In single-level flash memory, each cell contains one floating-gate MOSFET (one transistor per bit),[ 296] whereas multi-level flash contains 2, 3 or 4 bits per transistor.
Flash memory chips are commonly stacked up in layers, up to 128-layer in production,[ 297] and 136-layer managed,[ 298] and available in end-user devices up to 69-layer from manufacturers.
Random-access memory (RAM)
Chip name
Capacity (bits )
RAM type
Transistor count
Date of introduction
Manufacturer(s)
Process
Area
Transistor density (tr./mm2 )
Ref
—
1-bit
SRAM (cell )
6
1963
Fairchild
—
—
?
[ 299]
—
1-bit
DRAM (cell)
1
1965
Toshiba
—
—
?
[ 300] [ 301]
?
8-bit
SRAM (bipolar )
48
1965
SDS , Signetics
?
?
?
[ 299]
SP95
16-bit
SRAM (bipolar)
80
1965
IBM
?
?
?
[ 302]
TMC3162
16-bit
SRAM (TTL )
96
1966
Transitron
—
?
?
[ 295]
?
?
SRAM (MOS )
?
1966
NEC
?
?
?
[ 294]
256-bit
DRAM (IC )
256
1968
Fairchild
?
?
?
[ 295]
64-bit
SRAM (PMOS )
384
1968
Fairchild
?
?
?
[ 294]
144-bit
SRAM (NMOS )
864
1968
NEC
1101
256-bit
SRAM (PMOS)
1,536
1969
Intel
12,000 nm
?
?
[ 303] [ 304] [ 305]
1102
1 Kb
DRAM (PMOS)
3,072
1970
Intel , Honeywell
?
?
?
[ 294]
1103
1 Kb
DRAM (PMOS)
3,072
1970
Intel
8,000 nm
10 mm2
307
[ 306] [ 293] [ 307] [ 295]
μPD403
1 Kb
DRAM (NMOS)
3,072
1971
NEC
?
?
?
[ 308]
?
2 Kb
DRAM (PMOS)
6,144
1971
General Instrument
?
12.7 mm2
484
[ 309]
2102
1 Kb
SRAM (NMOS)
6,144
1972
Intel
?
?
?
[ 303] [ 310]
?
8 Kb
DRAM (PMOS)
8,192
1973
IBM
?
18.8 mm2
436
[ 309]
5101
1 Kb
SRAM (CMOS )
6,144
1974
Intel
?
?
?
[ 303]
2116
16 Kb
DRAM (NMOS)
16,384
1975
Intel
?
?
?
[ 311] [ 295]
2114
4 Kb
SRAM (NMOS)
24,576
1976
Intel
?
?
?
[ 303] [ 312]
?
4 Kb
SRAM (CMOS)
24,576
1977
Toshiba
?
?
?
[ 304]
64 Kb
DRAM (NMOS)
65,536
1977
NTT
?
35.4 mm2
1851
[ 309]
DRAM (VMOS )
65,536
1979
Siemens
?
25.2 mm2
2601
[ 309]
16 Kb
SRAM (CMOS)
98,304
1980
Hitachi , Toshiba
?
?
?
[ 313]
256 Kb
DRAM (NMOS)
262,144
1980
NEC
1,500 nm
41.6 mm2
6302
[ 309]
NTT
1,000 nm
34.4 mm2
7620
[ 309]
64 Kb
SRAM (CMOS)
393,216
1980
Matsushita
?
?
?
[ 313]
288 Kb
DRAM
294,912
1981
IBM
?
25 mm2
11,800
[ 314]
64 Kb
SRAM (NMOS)
393,216
1982
Intel
1,500 nm
?
?
[ 313]
256 Kb
SRAM (CMOS)
1,572,864
1984
Toshiba
1,200 nm
?
?
[ 313] [ 305]
8 Mb
DRAM
8,388,608
January 5, 1984
Hitachi
?
?
?
[ 315] [ 316]
16 Mb
DRAM (CMOS )
16,777,216
1987
NTT
700 nm
148 mm2
113,400
[ 309]
4 Mb
SRAM (CMOS)
25,165,824
1990
NEC, Toshiba, Hitachi, Mitsubishi
?
?
?
[ 313]
64 Mb
DRAM (CMOS)
67,108,864
1991
Matsushita , Mitsubishi, Fujitsu , Toshiba
400 nm
KM48SL2000
16 Mb
SDRAM
16,777,216
1992
Samsung
?
?
?
[ 317] [ 318]
?
16 Mb
SRAM (CMOS)
100,663,296
1992
Fujitsu, NEC
400 nm
?
?
[ 313]
256 Mb
DRAM (CMOS)
268,435,456
1993
Hitachi, NEC
250 nm
1 Gb
DRAM
1,073,741,824
January 9, 1995
NEC
250 nm
?
?
[ 319] [ 320]
Hitachi
160 nm
?
?
SDRAM
1,073,741,824
1996
Mitsubishi
150 nm
?
?
[ 313]
SDRAM (SOI )
1,073,741,824
1997
Hyundai
?
?
?
[ 321]
4 Gb
DRAM (4-bit )
1,073,741,824
1997
NEC
150 nm
?
?
[ 313]
DRAM
4,294,967,296
1998
Hyundai
?
?
?
[ 321]
8 Gb
SDRAM (DDR3 )
8,589,934,592
April 2008
Samsung
50 nm
?
?
[ 322]
16 Gb
SDRAM (DDR3)
17,179,869,184
2008
32 Gb
SDRAM (HBM2 )
34,359,738,368
2016
Samsung
20 nm
?
?
[ 323]
64 Gb
SDRAM (HBM2)
68,719,476,736
2017
128 Gb
SDRAM (DDR4 )
137,438,953,472
2018
Samsung
10 nm
?
?
[ 324]
?
RRAM [ 325] (3DSoC)[ 326]
?
2019
SkyWater Technology [ 327]
90 nm
?
?
Flash memory
Chip name
Capacity (bits )
Flash type
FGMOS transistor count
Date of introduction
Manufacturer(s)
Process
Area
Transistor density (tr./mm2 )
Ref
?
256 Kb
NOR
262,144
1985
Toshiba
2,000 nm
?
?
[ 313]
1 Mb
NOR
1,048,576
1989
Seeq , Intel
?
4 Mb
NAND
4,194,304
1989
Toshiba
1,000 nm
16 Mb
NOR
16,777,216
1991
Mitsubishi
600 nm
DD28F032SA
32 Mb
NOR
33,554,432
1993
Intel
?
280 mm2
120,000
[ 303] [ 328]
?
64 Mb
NOR
67,108,864
1994
NEC
400 nm
?
?
[ 313]
NAND
67,108,864
1996
Hitachi
128 Mb
NAND
134,217,728
1996
Samsung , Hitachi
?
256 Mb
NAND
268,435,456
1999
Hitachi , Toshiba
250 nm
512 Mb
NAND
536,870,912
2000
Toshiba
?
?
?
[ 329]
1 Gb
2-bit NAND
536,870,912
2001
Samsung
?
?
?
[ 313]
Toshiba, SanDisk
160 nm
?
?
[ 330]
2 Gb
NAND
2,147,483,648
2002
Samsung, Toshiba
?
?
?
[ 331] [ 332]
8 Gb
NAND
8,589,934,592
2004
Samsung
60 nm
?
?
[ 331]
16 Gb
NAND
17,179,869,184
2005
Samsung
50 nm
?
?
[ 333]
32 Gb
NAND
34,359,738,368
2006
Samsung
40 nm
THGAM
128 Gb
Stacked NAND
128,000,000,000
April 2007
Toshiba
56 nm
252 mm2
507,900,000
[ 334]
THGBM
256 Gb
Stacked NAND
256,000,000,000
2008
Toshiba
43 nm
353 mm2
725,200,000
[ 335]
THGBM2
1 Tb
Stacked 4-bit NAND
256,000,000,000
2010
Toshiba
32 nm
374 mm2
684,500,000
[ 336]
KLMCG8GE4A
512 Gb
Stacked 2-bit NAND
256,000,000,000
2011
Samsung
?
192 mm2
1,333,000,000
[ 337]
KLUFG8R1EM
4 Tb
Stacked 3-bit V-NAND
1,365,333,333,504
2017
Samsung
?
150 mm2
9,102,000,000
[ 338]
eUFS (1 TB)
8 Tb
Stacked 4-bit V-NAND
2,048,000,000,000
2019
Samsung
?
150 mm2
13,650,000,000
[ 339] [ 340]
?
1 Tb
232L TLC NAND die
333,333,333,333
2022
Micron
?
68.5 mm2 (memory array)
4,870,000,000 (14.6 Gbit/mm2 )
[ 341] [ 342] [ 343] [ 344]
?
16 Tb
232L package
5,333,333,333,333
2022
Micron
?
68.5 mm2 (memory array)
77,900,000,000 (16×14.6 Gbit/mm2 )
Read-only memory (ROM)
Chip name
Capacity (bits )
ROM type
Transistor count
Date of introduction
Manufacturer(s)
Process
Area
Ref
?
?
PROM
?
1956
Arma
—
?
[ 345] [ 346]
1 Kb
ROM (MOS )
1,024
1965
General Microelectronics
?
?
[ 347]
3301
1 Kb
ROM (bipolar )
1,024
1969
Intel
—
?
[ 347]
1702
2 Kb
EPROM (MOS)
2,048
1971
Intel
?
15 mm2
[ 348]
?
4 Kb
ROM (MOS)
4,096
1974
AMD , General Instrument
?
?
[ 347]
2708
8 Kb
EPROM (MOS)
8,192
1975
Intel
?
?
[ 303]
?
2 Kb
EEPROM (MOS)
2,048
1976
Toshiba
?
?
[ 349]
μCOM-43 ROM
16 Kb
PROM (PMOS )
16,000
1977
NEC
?
?
[ 350]
2716
16 Kb
EPROM (TTL )
16,384
1977
Intel
—
?
[ 306] [ 351]
EA8316F
16 Kb
ROM (NMOS )
16,384
1978
Electronic Arrays
?
436 mm2
[ 347] [ 352]
2732
32 Kb
EPROM
32,768
1978
Intel
?
?
[ 303]
2364
64 Kb
ROM
65,536
1978
Intel
?
?
[ 353]
2764
64 Kb
EPROM
65,536
1981
Intel
3,500 nm
?
[ 303] [ 313]
27128
128 Kb
EPROM
131,072
1982
Intel
?
27256
256 Kb
EPROM (HMOS )
262,144
1983
Intel
?
?
[ 303] [ 354]
?
256 Kb
EPROM (CMOS )
262,144
1983
Fujitsu
?
?
[ 355]
512 Kb
EPROM (NMOS)
524,288
1984
AMD
1,700 nm
?
[ 313]
27512
512 Kb
EPROM (HMOS)
524,288
1984
Intel
?
?
[ 303] [ 356]
?
1 Mb
EPROM (CMOS)
1,048,576
1984
NEC
1,200 nm
?
[ 313]
4 Mb
EPROM (CMOS)
4,194,304
1987
Toshiba
800 nm
16 Mb
EPROM (CMOS)
16,777,216
1990
NEC
600 nm
MROM
16,777,216
1995
AKM , Hitachi
?
?
[ 320]
Transistor computers
Part of an IBM 7070 card cage populated with Standard Modular System cards
Before transistors were invented, relays were used in commercial tabulating machines and experimental early computers. The world's first working programmable , fully automatic digital computer ,[ 357] the 1941 Z3 22-bit word length computer, had 2,600 relays, and operated at a clock frequency of about 4–5 Hz . The 1940 Complex Number Computer had fewer than 500 relays,[ 358] but it was not fully programmable. The earliest practical computers used vacuum tubes and solid-state diode logic . ENIAC had 18,000 vacuum tubes, 7,200 crystal diodes, and 1,500 relays, with many of the vacuum tubes containing two triode elements.
The second generation of computers were transistor computers that featured boards filled with discrete transistors, solid-state diodes and magnetic memory cores . The experimental 1953 48-bit Transistor Computer , developed at the University of Manchester , is widely believed to be the first transistor computer to come into operation anywhere in the world (the prototype had 92 point-contact transistors and 550 diodes).[ 359] A later version the 1955 machine had a total of 250 junction transistors and 1,300 point-contact diodes. The Computer also used a small number of tubes in its clock generator, so it was not the first fully transistorized. The ETL Mark III, developed at the Electrotechnical Laboratory in 1956, may have been the first transistor-based electronic computer using the stored program method. It had about "130 point-contact transistors and about 1,800 germanium diodes were used for logic elements, and these were housed on 300 plug-in packages which could be slipped in and out."[ 360] The 1958 decimal architecture IBM 7070 was the first transistor computer to be fully programmable. It had about 30,000 alloy-junction germanium transistors and 22,000 germanium diodes, on approximately 14,000 Standard Modular System (SMS) cards. The 1959 MOBIDIC , short for "MOBIle DIgital Computer", at 12,000 pounds (6.0 short tons) mounted in the trailer of a semi-trailer truck, was a transistorized computer for battlefield data.
The third generation of computers used integrated circuits (ICs).[ 361] The 1962 15-bit Apollo Guidance Computer used "about 4,000 "Type-G" (3-input NOR gate) circuits" for about 12,000 transistors plus 32,000 resistors.[ 362]
The IBM System/360 , introduced 1964, used discrete transistors in hybrid circuit packs.[ 361] The 1965 12-bit PDP-8 CPU had 1409 discrete transistors and over 10,000 diodes, on many cards. Later versions, starting with the 1968 PDP-8/I, used integrated circuits. The PDP-8 was later reimplemented as a microprocessor as the Intersil 6100 , see below.[ 363]
The next generation of computers were the microcomputers , starting with the 1971 Intel 4004 , which used MOS transistors. These were used in home computers or personal computers (PCs).
This list includes early transistorized computers (second generation) and IC-based computers (third generation) from the 1950s and 1960s.
Computer
Transistor count
Year
Manufacturer
Notes
Ref
Transistor Computer
92
1953
University of Manchester
Point-contact transistors , 550 diodes. Lacked stored program capability.
[ 359]
TRADIC
700
1954
Bell Labs
Point-contact transistors
[ 359]
Transistor Computer (full size)
250
1955
University of Manchester
Discrete point-contact transistors, 1,300 diodes
[ 359]
IBM 608
3,000
1955
IBM
Germanium transistors
[ 364]
ETL Mark III
130
1956
Electrotechnical Laboratory
Point-contact transistors, 1,800 diodes, stored program capability
[ 359] [ 360]
Metrovick 950
200
1956
Metropolitan-Vickers
Discrete junction transistors
NEC NEAC-2201
600
1958
NEC
Germanium transistors
[ 365]
Hitachi MARS-1
1,000
1958
Hitachi
[ 366]
IBM 7070
30,000
1958
IBM
Alloy-junction germanium transistors, 22,000 diodes
[ 367]
Matsushita MADIC-I
400
1959
Matsushita
Bipolar transistors
[ 368]
NEC NEAC-2203
2,579
1959
NEC
[ 369]
Toshiba TOSBAC-2100
5,000
1959
Toshiba
[ 370]
IBM 7090
50,000
1959
IBM
Discrete germanium transistors
[ 371]
PDP-1
2,700
1959
Digital Equipment Corporation
Discrete transistors
Olivetti Elea 9003
?
1959
Olivetti
300,000 (?) discrete transistors and diodes
[ 372]
Mitsubishi MELCOM 1101
3,500
1960
Mitsubishi
Germanium transistors
[ 373]
M18 FADAC
1,600
1960
Autonetics
Discrete transistors
CPU of IBM 7030 Stretch
169,100
1961
IBM
World's fastest computer from 1961 to 1964
[ 374]
D-17B
1,521
1962
Autonetics
Discrete transistors
NEC NEAC-L2
16,000
1964
NEC
Ge transistors
[ 375]
CDC 6600 (entire computer)
400,000
1964
Control Data Corporation
World's fastest computer from 1964 to 1969
[ 376]
IBM System/360
?
1964
IBM
Hybrid circuits
PDP-8 "Straight-8"
1,409[ 363]
1965
Digital Equipment Corporation
discrete transistors, 10,000 diodes
PDP-8/S
1,001[ 377] [ 378] [ 379]
1966
Digital Equipment Corporation
discrete transistors, diodes
PDP-8/I
1,409[citation needed ]
1968[ 380]
Digital Equipment Corporation
74 series TTL circuits[ 381]
Apollo Guidance Computer Block I
12,300
1966
Raytheon / MIT Instrumentation Laboratory
4,100 ICs , each containing a 3-transistor, 3-input NOR gate. (Block II had 2,800 dual 3-input NOR gates ICs.)
Logic functions
Transistor count for generic logic functions is based on static CMOS implementation.[ 382]
Function
Transistor count
Ref
NOT
2
Buffer
4
NAND 2-input
4
NOR 2-input
4
AND 2-input
6
OR 2-input
6
NAND 3-input
6
NOR 3-input
6
XOR 2-input
6
XNOR 2-input
8
MUX 2-input with TG
6
MUX 4-input with TG
18
NOT MUX 2-input
8
MUX 4-input
24
1-bit full adder
24
1-bit adder–subtractor
48
AND-OR-INVERT
6
[ 383]
Latch, D gated
8
Flip-flop, edge triggered dynamic D with reset
12
8-bit multiplier
3,000
16-bit multiplier
9,000
32-bit multiplier
21,000
[citation needed ]
small-scale integration
2–100
[ 384]
medium-scale integration
100–500
[ 384]
large-scale integration
500–20,000
[ 384]
very-large-scale integration
20,000–1,000,000
[ 384]
ultra-large scale integration
>1,000,000
Parallel systems
Historically, each processing element in earlier parallel systems—like all CPUs of that time—was a serial computer built out of multiple chips. As transistor counts per chip increases, each processing element could be built out of fewer chips, and then later each multi-core processor chip could contain more processing elements.[ 385]
Goodyear MPP : (1983?) 8 pixel processors per chip, 3,000 to 8,000 transistors per chip.[ 385]
Brunel University Scape (single-chip array-processing element): (1983) 256 pixel processors per chip, 120,000 to 140,000 transistors per chip.[ 385]
Cell Broadband Engine : (2006) with 9 cores per chip, had 234 million transistors per chip.[ 386]
Other devices
Device type
Device name
Transistor count
Date of introduction
Designer(s)
Manufacturer(s)
MOS process
Area
Transistor density, tr./mm2
Ref
Deep learning engine / IPU[ h]
Colossus GC2
23,600,000,000
2018
Graphcore
TSMC
16 nm
~800 mm2
29,500,000
[ 387] [ 388] [ 389] [better source needed ]
Deep learning engine / IPU
Wafer Scale Engine
1,200,000,000,000
2019
Cerebras
TSMC
16 nm
46,225 mm2
25,960,000
[ 1] [ 2] [ 3] [ 4]
Deep learning engine / IPU
Wafer Scale Engine 2
2,600,000,000,000
2020
Cerebras
TSMC
7 nm
46,225 mm2
56,250,000
[ 5] [ 390] [ 391]
Network switch
NVLink4 NVSwitch
25,100,000,000
2022
Nvidia
TSMC
N4 (4 nm)
294 mm2
85,370,000
[ 392]
Transistor density
The transistor density is the number of transistors that are fabricated per unit area, typically measured in terms of the number of transistors per square millimeter (mm2 ). The transistor density usually correlates with the gate length of a semiconductor node (also known as a semiconductor manufacturing process ), typically measured in nanometers (nm). As of 2019[update] , the semiconductor node with the highest transistor density is TSMC's 5 nanometer node, with 171.3 million transistors per square millimeter (note this corresponds to a transistor-transistor spacing of 76.4 nm, far greater than the relative meaningless "5nm")[ 393]
MOSFET nodes
Semiconductor nodes
Node name
Transistor density (transistors/mm2 )
Production year
Process
MOSFET
Manufacturer(s)
Ref
?
?
1960
20,000 nm
PMOS
Bell Labs
[ 394] [ 395]
?
?
1960
20,000 nm
NMOS
?
?
1963
?
CMOS
Fairchild
[ 396]
?
?
1964
?
PMOS
General Microelectronics
[ 397]
?
?
1968
20,000 nm
CMOS
RCA
[ 398]
?
?
1969
12,000 nm
PMOS
Intel
[ 313] [ 305]
?
?
1970
10,000 nm
CMOS
RCA
[ 398]
?
300
1970
8,000 nm
PMOS
Intel
[ 307] [ 295]
?
?
1971
10,000 nm
PMOS
Intel
[ 399]
?
480
1971
?
PMOS
General Instrument
[ 309]
?
?
1973
?
NMOS
Texas Instruments
[ 309]
?
220
1973
?
NMOS
Mostek
[ 309]
?
?
1973
7,500 nm
NMOS
NEC
[ 19] [ 18]
?
?
1973
6,000 nm
PMOS
Toshiba
[ 20] [ 400]
?
?
1976
5,000 nm
NMOS
Hitachi , Intel
[ 309]
?
?
1976
5,000 nm
CMOS
RCA
?
?
1976
4,000 nm
NMOS
Zilog
?
?
1976
3,000 nm
NMOS
Intel
[ 401]
?
1,850
1977
?
NMOS
NTT
[ 309]
?
?
1978
3,000 nm
CMOS
Hitachi
[ 402]
?
?
1978
2,500 nm
NMOS
Texas Instruments
[ 309]
?
?
1978
2,000 nm
NMOS
NEC, NTT
?
2,600
1979
?
VMOS
Siemens
?
7,280
1979
1,000 nm
NMOS
NTT
?
7,620
1980
1,000 nm
NMOS
NTT
?
?
1983
2,000 nm
CMOS
Toshiba
[ 313]
?
?
1983
1,500 nm
CMOS
Intel
[ 309]
?
?
1983
1,200 nm
CMOS
Intel
?
?
1984
800 nm
CMOS
NTT
?
?
1987
700 nm
CMOS
Fujitsu
?
?
1989
600 nm
CMOS
Mitsubishi , NEC, Toshiba
[ 313]
?
?
1989
500 nm
CMOS
Hitachi, Mitsubishi, NEC, Toshiba
?
?
1991
400 nm
CMOS
Matsushita , Mitsubishi, Fujitsu, Toshiba
?
?
1993
350 nm
CMOS
Sony
?
?
1993
250 nm
CMOS
Hitachi, NEC
3LM
32,000
1994
350 nm
CMOS
NEC
[ 204]
?
?
1995
160 nm
CMOS
Hitachi
[ 313]
?
?
1996
150 nm
CMOS
Mitsubishi
TSMC 180 nm
?
1998
180 nm
CMOS
TSMC
[ 403]
CS80
?
1999
180 nm
CMOS
Fujitsu
[ 404]
?
?
1999
180 nm
CMOS
Intel, Sony, Toshiba
[ 303] [ 216]
CS85
?
1999
170 nm
CMOS
Fujitsu
[ 405]
Samsung 140 nm
?
1999
140 nm
CMOS
Samsung
[ 313]
?
?
2001
130 nm
CMOS
Fujitsu, Intel
[ 404] [ 303]
Samsung 100 nm
?
2001
100 nm
CMOS
Samsung
[ 313]
?
?
2002
90 nm
CMOS
Sony, Toshiba, Samsung
[ 216] [ 331]
CS100
?
2003
90 nm
CMOS
Fujitsu
[ 404]
Intel 90 nm
1,450,000
2004
90 nm
CMOS
Intel
[ 406] [ 303]
Samsung 80 nm
?
2004
80 nm
CMOS
Samsung
[ 407]
?
?
2004
65 nm
CMOS
Fujitsu, Toshiba
[ 408]
Samsung 60 nm
?
2004
60 nm
CMOS
Samsung
[ 331]
TSMC 45 nm
?
2004
45 nm
CMOS
TSMC
Elpida 90 nm
?
2005
90 nm
CMOS
Elpida Memory
[ 409]
CS200
?
2005
65 nm
CMOS
Fujitsu
[ 410] [ 404]
Samsung 50 nm
?
2005
50 nm
CMOS
Samsung
[ 333]
Intel 65 nm
2,080,000
2006
65 nm
CMOS
Intel
[ 406]
Samsung 40 nm
?
2006
40 nm
CMOS
Samsung
[ 333]
Toshiba 56 nm
?
2007
56 nm
CMOS
Toshiba
[ 334]
Matsushita 45 nm
?
2007
45 nm
CMOS
Matsushita
[ 81]
Intel 45 nm
3,300,000
2008
45 nm
CMOS
Intel
[ 411]
Toshiba 43 nm
?
2008
43 nm
CMOS
Toshiba
[ 335]
TSMC 40 nm
?
2008
40 nm
CMOS
TSMC
[ 412]
Toshiba 32 nm
?
2009
32 nm
CMOS
Toshiba
[ 413]
Intel 32 nm
7,500,000
2010
32 nm
CMOS
Intel
[ 411]
?
?
2010
20 nm
CMOS
Hynix , Samsung
[ 414] [ 333]
Intel 22 nm
15,300,000
2012
22 nm
CMOS
Intel
[ 411]
IMFT 20 nm
?
2012
20 nm
CMOS
IMFT
[ 415]
Toshiba 19 nm
?
2012
19 nm
CMOS
Toshiba
Hynix 16 nm
?
2013
16 nm
FinFET
SK Hynix
[ 414]
TSMC 16 nm
28,880,000
2013
16 nm
FinFET
TSMC
[ 416] [ 417]
Samsung 10 nm
51,820,000
2013
10 nm
FinFET
Samsung
[ 418] [ 419]
Intel 14 nm
37,500,000
2014
14 nm
FinFET
Intel
[ 411]
14LP
32,940,000
2015
14 nm
FinFET
Samsung
[ 418]
TSMC 10 nm
52,510,000
2016
10 nm
FinFET
TSMC
[ 416] [ 420]
12LP
36,710,000
2017
12 nm
FinFET
GlobalFoundries , Samsung
[ 237]
N7FF
96,500,000
101,850,000[ 421]
2017
7 nm
FinFET
TSMC
[ 422] [ 423] [ 424]
8LPP
61,180,000
2018
8 nm
FinFET
Samsung
[ 418]
7LPE
95,300,000
2018
7 nm
FinFET
Samsung
[ 423]
Intel 10 nm
100,760,000
106,100,000[ 421]
2018
10 nm
FinFET
Intel
[ 425]
5LPE
126,530,000
133,560,000[ 421]
134,900,000[ 426]
2018
5 nm
FinFET
Samsung
[ 427] [ 428]
N7FF+
113,900,000
2019
7 nm
FinFET
TSMC
[ 422] [ 423]
CLN5FF
171,300,000
185,460,000[ 421]
2019
5 nm
FinFET
TSMC
[ 393]
Intel 7
100,760,000
106,100,000[ 421]
2021
7 nm
FinFET
Intel
4LPE
145,700,000[ 426]
2021
4 nm
FinFET
Samsung
[ 429] [ 430] [ 431]
N4
196,600,000[ 421] [ 432]
2021
4 nm
FinFET
TSMC
[ 433]
N4P
196,600,000[ 421] [ 432]
2022
4 nm
FinFET
TSMC
[ 434]
3GAE
202,850,000[ 421]
2022
3 nm
MBCFET
Samsung
[ 435] [ 429] [ 436]
N3
314,730,000[ 421]
2022
3 nm
FinFET
TSMC
[ 437] [ 438]
N4X
?
2023
4 nm
FinFET
TSMC
[ 439] [ 440] [ 441]
N3E
?
2023
3 nm
FinFET
TSMC
[ 438] [ 442]
3GAP
?
2023
3 nm
MBCFET
Samsung
[ 429]
Intel 4
160,000,000[ 443]
2023
4 nm
FinFET
Intel
[ 444] [ 445] [ 446]
Intel 3
?
2023
3 nm
FinFET
Intel
[ 445] [ 446]
Intel 20A
?
2024
2 nm
RibbonFET
Intel
[ 445] [ 446]
Intel 18A
?
2025
sub-2 nm
RibbonFET
Intel
[ 445]
2GAP
?
2025
2 nm
MBCFET
Samsung
[ 429]
N2
?
2025
2 nm
GAAFET
TSMC
[ 438] [ 442]
Samsung 1.4 nm
?
2027
1.4 nm
?
Samsung
[ 447]
See also
Notes
^ Declassified 1998
^ The TMS1000 is a microcontroller, the transistor count includes memory and input/output controllers, not just the CPU.
^ 3,510 without depletion mode pull-up transistors
^ 6,813 without depletion mode pull-up transistors
^ 3,900,000,000 core chiplet die, 2,090,000,000 I/O die
^ a b Estimate
^ Versal Premium are confirmed to be shipping in 1H 2021 but nothing was mentioned about the VP1802 in particular. Usually Xilinx makes separate news for the release of its biggest devices so the VP1802 is likely to be released later.
^ "Intelligence Processing Unit"
References
^ a b Hruska, Joel (August 2019). "Cerebras Systems Unveils 1.2 Trillion Transistor Wafer-Scale Processor for AI" . extremetech.com . Retrieved September 6, 2019 .
^ a b Feldman, Michael (August 2019). "Machine Learning chip breaks new ground with waferscale integration" . nextplatform.com . Retrieved September 6, 2019 .
^ a b Cutress, Ian (August 2019). "Hot Chips 31 Live Blogs: Cerebras' 1.2 Trillion Transistor Deep Learning Processor" . anandtech.com . Retrieved September 6, 2019 .
^ a b "A Look at Cerebras Wafer-Scale Engine: Half Square Foot Silicon Chip" . WikiChip Fuse . November 16, 2019. Retrieved December 2, 2019 .
^ a b Everett, Joseph (August 26, 2020). "World's largest CPU has 850,000 7 nm cores that are optimized for AI and 2.6 trillion transistors" . TechReportArticles .
^ a b "Apple introduces M2 Ultra" (Press release). Apple. June 5, 2023.
^ "John Gustafson's answer to How many individual transistors are in the world's most powerful supercomputer?" . Quora . Retrieved August 22, 2019 .
^ Pires, Francisco (October 5, 2022). "Water-Based Chips Could be Breakthrough for Neural Networking, AI: Wetware has gained an entirely new meaning" . Tom's Hardware . Retrieved October 5, 2022 .
^ Laws, David (April 2, 2018). "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History" . Computer History Museum .
^ Handy, Jim (May 26, 2014). "How Many Transistors Have Ever Shipped?" . Forbes .
^ "1971: Microprocessor Integrates CPU Function onto a Single Chip" . The Silicon Engine . Computer History Museum . Retrieved September 4, 2019 .
^ a b Holt, Ray. "World's First Microprocessor" . Retrieved March 5, 2016 . 1st fully integrated chip set microprocessor
^ a b "Alpha 21364 - Microarchitectures - Compaq - WikiChip" . en.wikichip.org . Retrieved September 8, 2019 .
^ Holt, Ray M. (1998). The F14A Central Air Data Computer and the LSI Technology State-of-the-Art in 1968 . p. 8.
^ Holt, Ray M. (2013). "F14 TomCat MOS-LSI Chip Set" . First Microprocessor . Archived from the original on November 6, 2020. Retrieved November 6, 2020 .
^ Ken Shirriff. "The Texas Instruments TMX 1795: the (almost) first, forgotten microprocessor" . 2015.
^ Ryoichi Mori; Hiroaki Tajima; Morihiko Tajima; Yoshikuni Okada (October 1977). "Microprocessors in Japan". Euromicro Newsletter . 3 (4): 50– 7. doi :10.1016/0303-1268(77)90111-0 .
^ a b "NEC 751 (uCOM-4)" . The Antique Chip Collector's Page. Archived from the original on May 25, 2011. Retrieved June 11, 2010 .
^ a b "1970s: Development and evolution of microprocessors" (PDF) . Semiconductor History Museum of Japan . Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019 .
^ a b "1973: 12-bit engine-control microprocessor (Toshiba)" (PDF) . Semiconductor History Museum of Japan . Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019 .
^ "Low Bandwidth Timeline – Semiconductor" . Texas Instruments . Retrieved June 22, 2016 .
^ "The MOS 6502 and the Best Layout Guy in the World" . research.swtch.com . January 3, 2011. Retrieved September 3, 2019 .
^ Shirriff, Ken (January 2023). "Counting the transistors in the 8086 processor: it's harder than you might think" .
^ "Digital History: ZILOG Z8000 (APRIL 1979)" . OLD-COMPUTERS.COM : The Museum . Retrieved June 19, 2019 .
^ "Chip Hall of Fame: Motorola MC68000 Microprocessor" . IEEE Spectrum . Institute of Electrical and Electronics Engineers . June 30, 2017. Retrieved June 19, 2019 .
^ Microprocessors: 1971 to 1976 Archived December 3, 2013, at the Wayback Machine Christiansen
^ "Microprocessors 1976 to 1981" . weber.edu. Archived from the original on December 3, 2013. Retrieved August 9, 2014 .
^ "W65C816S 16-bit Core" . www.westerndesigncenter.com . Retrieved September 12, 2017 .
^ a b c d e Demone, Paul (November 9, 2000). "ARM's Race to World Domination" . real world technologies. Retrieved July 20, 2015 .
^ Hand, Tom. "The Harris RTX 2000 Microcontroller" (PDF) . mpeforth.com . Retrieved August 9, 2014 .
^ "Forth chips list" . UltraTechnology. March 15, 2001. Retrieved August 9, 2014 .
^ Koopman, Philip J. (1989). "4.4 Architecture of the Novix NC4016" . Stack Computers: the new wave . Ellis Horwood Series in Computers and Their Applications. Carnegie Mellon University. ISBN 978-0745804187 . Retrieved August 9, 2014 .
^ "Fujitsu SPARC" . cpu-collection.de . Retrieved June 30, 2019 .
^ a b Kimura S, Komoto Y, Yano Y (1988). "Implementation of the V60/V70 and its FRM function". IEEE Micro . 8 (2): 22– 36. doi :10.1109/40.527 . S2CID 9507994 .
^ "VL2333 - VTI - WikiChip" . en.wikichip.org . Retrieved August 31, 2019 .
^ Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K (1988). "Realization of Gmicro/200". IEEE Micro . 8 (2): 12– 21. doi :10.1109/40.526 . S2CID 36938046 .
^ Bosshart, P.; Hewes, C.; Mi-Chang Chang; Kwok-Kit Chau; Hoac, C.; Houston, T.; Kalyan, V.; Lusky, S.; Mahant-Shetti, S.; Matzke, D.; Ruparel, K.; Ching-Hao Shaw; Sridhar, T.; Stark, D. (October 1987). "A 553K-Transistor LISP Processor Chip". IEEE Journal of Solid-State Circuits . 22 (5): 202– 3. doi :10.1109/ISSCC.1987.1157084 . S2CID 195841103 .
^ Fahlén, Lennart E.; Stockholm International Peace Research Institute (1987). "3. Hardware requirements for artificial intelligence § Lisp Machines: TI Explorer" . Arms and Artificial Intelligence: Weapon and Arms Control Applications of Advanced Computing . SIPRI Monograph Series. Oxford University Press. p. 57. ISBN 978-0-19-829122-0 .
^
Jouppi, Norman P. ; Tang, Jeffrey Y. F. (July 1989). "A 20-MIPS Sustained 32-bit CMOS Microprocessor with High Ratio of Sustained to Peak Performance". IEEE Journal of Solid-State Circuits . 24 (5): i. Bibcode :1989IJSSC..24.1348J . CiteSeerX 10.1.1.85.988 . doi :10.1109/JSSC.1989.572612 . WRL Research Report 89/11.
^ "The CPU shack museum" . CPUshack.com. May 15, 2005. Retrieved August 9, 2014 .
^ a b c "Intel i960 Embedded Microprocessor" . National High Magnetic Field Laboratory . Florida State University . March 3, 2003. Archived from the original on March 3, 2003. Retrieved June 29, 2019 .
^ Venkatasawmy, Rama (2013). The Digitization of Cinematic Visual Effects: Hollywood's Coming of Age . Rowman & Littlefield . p. 198. ISBN 9780739176214 .
^ Bakoglu, Grohoski, and Montoye. "The IBM RISC System/6000 processor: Hardware overview." IBM J. Research and Development. Vol. 34 No. 1, January 1990, pp. 12-22.
^ "SH Microprocessor Leading the Nomadic Era" (PDF) . Semiconductor History Museum of Japan . Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019 .
^ "SH2: A Low Power RISC Micro for Consumer Applications" (PDF) . Hitachi . Archived from the original (PDF) on May 10, 2019. Retrieved June 27, 2019 .
^ "HARP-1: A 120 MHz Superscalar PA-RISC Processor" (PDF) . Hitachi . Archived from the original (PDF) on April 23, 2016. Retrieved June 19, 2019 .
^ White and Dhawan. "POWER2: next generation of the RISC System/6000 family" IBM J. Research and Development. Vol. 38 No. 5, September 1994, pp. 493-502.
^ "ARM7 Statistics" . Poppyfields.net. May 27, 1994. Retrieved August 9, 2014 .
^ "Forth Multiprocessor Chip MuP21" . www.ultratechnology.com . Retrieved September 6, 2019 . MuP21 has a 21-bit CPU core, a memory coprocessor, and a video coprocessor
^ a b "F21 CPU" . www.ultratechnology.com . Retrieved September 6, 2019 . F21 offers video I/O, analog I/O, serial network I/O, and a parallel I/O port on chip. F21 has a transistor count of about 15,000 vs about 7,000 for MuP21.
^ "Ars Technica: PowerPC on Apple: An Architectural History, Part I - Page 2 - (8/2004)" . archive.arstechnica.com . Retrieved August 11, 2020 .
^ Gary et al. (1994). "The PowerPC 603 microprocessor: a low-power design for portable applications." Proceedings of COMPCON 94. DOI: 10.1109/CMPCON.1994.282894
^ Slaton et al. (1995). "The PowerPC 603e microprocessor: an enhanced, low-power, superscalar microprocessor." Proceedings of ICCD '95 International Conference on Computer Design. DOI: 10.1109/ICCD.1995.528810
^ Bowhill, William J. et al. (1995). "Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU". Digital Technical Journal , Volume 7, Number 1, pp. 100–118.
^ "Intel Pentium Pro 180" . hw-museum.cz . February 20, 2015. Retrieved September 8, 2019 .
^ "PC Guide Intel Pentium Pro ("P6")" . PCGuide.com. April 17, 2001. Archived from the original on April 14, 2001. Retrieved August 9, 2014 .
^ Gaddis, N.; Lotz, J. (November 1996). "A 64-b quad-issue CMOS RISC microprocessor". IEEE Journal of Solid-State Circuits 31 (11): pp. 1697–1702.
^ Bouchard, Gregg. "Design objectives of the 0.35 μm Alpha 21164 Microprocessor" . IEEE Hot Chips Symposium, August 1996, IEEE Computer Society.
^ Ulf Samuelsson. "Transistor count of common uCs?" . www.embeddedrelated.com . Retrieved September 8, 2019 . IIRC, The AVR core is 12,000 gates, and the megaAVR core is 20,000 gates. Each gate is 4 transistors. The chip is considerably larger since the memory uses quite a lot.
^ Gronowski, Paul E. et al. (May 1998). "High-performance microprocessor design". IEEE Journal of Solid-State Circuits 33 (5): pp. 676–686.
^
Nakagawa, Norio; Arakawa, Fumio (April 1999). "Entertainment Systems and High-Performance Processor SH-4" (PDF) . Hitachi Review . 48 (2): 58– 63. Retrieved March 18, 2023 .
^ Nishii, O.; Arakawa, F.; Ishibashi, K.; Nakano, S.; Shimura, T.; Suzuki, K.; Tachibana, M.; Totsuka, Y.; Tsunoda, T.; Uchiyama, K.; Yamada, T.; Hattori, T.; Maejima, H.; Nakagawa, N.; Narita, S.; Seki, M.; Shimazaki, Y.; Satomura, R.; Takasuga, T.; Hasegawa, A. (1998). "A 200 MHZ 1.2 W 1.4 GFLOPS microprocessor with graphic operation unit" . 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No. 98CH36156) . IEEE . pp. 18.1-1 - 18.1-11. doi :10.1109/ISSCC.1998.672469 . ISBN 0-7803-4344-1 . S2CID 45392734 . Retrieved March 17, 2023 .
^ a b c Diefendorff, Keith (April 19, 1999). "Sony's Emotionally Charged Chip: Killer Floating-Point "Emotion Engine" To Power PlayStation 2000" (PDF) . Microprocessor Report . 13 (5). S2CID 29649747 . Archived from the original (PDF) on February 28, 2019. Retrieved June 19, 2019 .
^ a b Hennessy, John L. ; Patterson, David A. (May 29, 2002). Computer Architecture: A Quantitative Approach (3 ed.). Morgan Kaufmann. p. 491. ISBN 978-0-08-050252-6 . Retrieved April 9, 2013 .
^ a b c "NVIDIA GeForce 7800 GTX GPU Review" . PC Perspective . June 22, 2005. Retrieved June 18, 2019 .
^ Ando, H.; Yoshida, Y.; Inoue, A.; Sugiyama, I.; Asakawa, T.; Morita, K.; Muta, T.; Otokurumada, T.; Okada, S.; Yamashita, H.; Satsukawa, Y.; Konmoto, A.; Yamashita, R.; Sugiyama, H. (2003). "A 1.3GHz fifth generation SPARC64 microprocessor". Proceedings of the 40th Annual Design Automation Conference . Design Automation Conference. pp. 702– 705. doi :10.1145/775832.776010 . ISBN 1-58113-688-9 .
^ Krewell, Kevin (21 October 2002). "Fujitsu's SPARC64 V Is Real Deal". Microprocessor Report .
^ "Intel Pentium M Processor 1.60 GHZ, 1M Cache, 400 MHZ FSB Product Specifications" .
^
"EE+GS" . PS2 Dev Wiki .
^
"Sony MARKETING (JAPAN) ANNOUNCES LAUNCH OF "PSX" DESR-5000 and DESR-7000 TOWARDS THE END OF 2003" (Press release). Sony. November 27, 2003.
^
"EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP" (PDF) . Sony . April 21, 2003. Retrieved March 19, 2023 .
^
"Sony PSX's 90nm CPU is 'not 90nm' " . The Register . January 30, 2004.
^
"Semi Insights stands by 'not 90-nm' description of PSX chip" . EE Times . February 5, 2004.
^ "Intel Pentium M Processor 760 (2M Cache, 2.00A GHZ, 533 MHZ FSB) Product Specifications" .
^ Fujitsu Limited (August 2004). SPARC64 V Processor For UNIX Server .
^ "A Glimpse Inside The Cell Processor" . Gamasutra . July 13, 2006. Retrieved June 19, 2019 .
^ "Intel Pentium D Processor 920" . Intel. Retrieved January 5, 2023 .
^ "PRESS KIT — Dual-core Intel Itanium Processor" . Intel. Retrieved August 9, 2014 .
^ a b Toepelt, Bert (January 8, 2009). "AMD Phenom II X4: 45nm Benchmarked — The Phenom II And AMD's Dragon Platform" . TomsHardware.com. Retrieved August 9, 2014 .
^ "ARM (Advanced RISC Machines) Processors" . EngineersGarage.com. Retrieved August 9, 2014 .
^ a b "Panasonic starts to sell a New-generation UniPhier System LSI" . Panasonic . October 10, 2007. Retrieved July 2, 2019 .
^ "SPARC64 VI Extensions" page 56, Fujitsu Limited, Release 1.3, 27 March 2007
^ Morgan, Timothy Prickett (17 July 2008). "Fujitsu and Sun Flex Their Quads with New Sparc Server Lineup" . The Unix Guardian , Vol. 8, No. 27.
^ Takumi Maruyama (2009). SPARC64 VIIIfx: Fujitsu's New Generation Octo Core Processor for PETA Scale computing (PDF) . Proceedings of Hot Chips 21. IEEE Computer Society. Archived from the original (PDF) on October 8, 2010. Retrieved June 30, 2019 .
^ "Intel Atom N450 specifications" . Intel . Retrieved June 8, 2023 .
^ "Intel Atom D510 specifications" . Intel . Retrieved June 8, 2023 .
^ Stokes, Jon (February 10, 2010). "Sun's 1 billion-transistor, 16-core Niagara 3 processor" . ArsTechnica.com. Retrieved August 9, 2014 .
^ "IBM to Ship World's Fastest Microprocessor" . IBM. September 1, 2010. Archived from the original on September 5, 2010. Retrieved August 9, 2014 .
^ "Intel to deliver first computer chip with two billion transistors" . AFP. February 5, 2008. Archived from the original on May 20, 2011. Retrieved February 5, 2008 .
^ "Intel Previews Intel Xeon 'Nehalem-EX' Processor ." May 26, 2009. Retrieved on May 28, 2009.
^ Morgan, Timothy Prickett (November 21, 2011), "Fujitsu parades 16-core Sparc64 super stunner" , The Register , retrieved December 8, 2011
^ Angelini, Chris (November 14, 2011). "Intel Core i7-3960X Review: Sandy Bridge-E And X79 Express" . TomsHardware.com. Retrieved August 9, 2014 .
^ "IDF2012 Mark Bohr, Intel Senior Fellow" (PDF) .
^ "Images of SPARC64" (PDF) . fujitsu.com. Retrieved August 29, 2017 .
^ "Intel's Atom Architecture: The Journey Begins" . AnandTech. Retrieved April 4, 2010 .
^ "Intel Xeon Phi SE10X" . TechPowerUp. Retrieved July 20, 2015 .
^ Shimpi, Lal. "The Haswell Review: Intel Core i7-4770K & i5-4670K Tested" . anandtech . Retrieved November 20, 2014 .
^ "Dimmick, Frank (August 29, 2014). "Intel Core i7 5960X Extreme Edition Review" . Overclockers Club . Retrieved August 29, 2014 .
^ "Apple A8X" . NotebookCheck . Retrieved July 20, 2015 .
^ "Intel Readying 15-core Xeon E7 v2" . AnandTech. Retrieved August 9, 2014 .
^ "Intel Xeon E5-2600 v3 Processor Overview: Haswell-EP Up to 18 Cores" . pcper . September 8, 2014. Retrieved January 29, 2015 .
^ "Intel's Broadwell-U arrives aboard 15W, 28W mobile processors" . TechReport. January 5, 2015. Retrieved January 5, 2015 .
^ "Oracle Cranks up the Cores to 32 with Sparc M7 Chip" . August 13, 2014.
^ "Broadwell-E: Intel Core i7-6950X, 6900K, 6850K & 6800K Review" . Tom's Hardware . May 30, 2016. Retrieved April 12, 2017 .
^ "The Broadwell-E Review" . PC Gamer . July 8, 2016. Retrieved April 12, 2017 .
^ "HUAWEI TO UNVEIL KIRIN 970 SOC WITH AI UNIT, 5.5 BILLION TRANSISTORS AND 1.2 GBPS LTE SPEED AT IFA 2017" . firstpost.com . September 1, 2017. Retrieved November 18, 2018 .
^ "Broadwell-EP Architecture - Intel Xeon E5-2600 v4 Broadwell-EP Review" . Tom's Hardware . March 31, 2016. Retrieved April 4, 2016 .
^ "About the ZipCPU" . zipcpu.com . Retrieved September 10, 2019 . As of ORCONF, 2016, the ZipCPU used between 1286 and 4926 6-LUTs, depending upon how it is configured.
^ "Qualcomm Snapdragon 835 (8998)" . NotebookCheck . Retrieved September 23, 2017 .
^ Takahashi, Dean (January 3, 2017). "Qualcomm's Snapdragon 835 will debut with 3 billion transistors and a 10nm manufacturing process" . VentureBeat .
^ Singh, Teja (2017). "3.2 Zen: A Next-Generation High-Performance x86 Core". Proc. IEEE International Solid-State Circuits Conference . pp. 52– 54.
^ Cutress, Ian (February 22, 2017). "AMD Launches Zen" . Anandtech.com. Retrieved February 22, 2017 .
^ "Ryzen 5 1600 - AMD" . Wikichip.org . April 20, 2018. Retrieved December 9, 2018 .
^ "Kirin 970 – HiSilicon" . Wikichip . March 1, 2018. Retrieved November 8, 2018 .
^ a b Leadbetter, Richard (April 6, 2017). "Inside the next Xbox: Project Scorpio tech revealed" . Eurogamer . Retrieved May 3, 2017 .
^ "Intel Xeon Platinum 8180" . TechPowerUp . December 1, 2018. Retrieved December 2, 2018 .
^ Pellerano, Stefano (March 2, 2022). "Circuit Design to Harness the Power of Scaling and Integration (ISSCC 2022)" . YouTube .
^ Lee, Y. "SiFive Freedom SoCs : Industry's First Open Source RISC V Chips" (PDF) . HotChips 29 IOT/Embedded . Archived from the original (PDF) on August 9, 2020. Retrieved June 19, 2019 .
^ "Documents at Fujitsu" (PDF) . fujitsu.com. Retrieved August 29, 2017 .
^ Schmerer, Kai (November 5, 2018). "iPad Pro 2018: A12X-Prozessor bietet deutlich mehr Leistung" . ZDNet.de (in German).
^ "Qualcomm Datacenter Technologies Announces Commercial Shipment of Qualcomm Centriq 2400 – The World's First 10nm Server Processor and Highest Performance Arm-based Server Processor Family Ever Designed" . Qualcomm . Retrieved November 9, 2017 .
^ "Qualcomm Snapdragon 1000 for laptops could pack 8.5 billion transistors" . techradar. Retrieved September 23, 2017 .
^ "Spotted: Qualcomm Snapdragon 8cx Wafer on 7nm" . AnandTech. Retrieved December 6, 2018 .
^ "HiSilicon Kirin 710" . Notebookcheck . September 19, 2018. Retrieved November 24, 2018 .
^ Yang, Daniel; Wegner, Stacy (September 21, 2018). "Apple iPhone Xs Max Teardown" . TechInsights. Retrieved September 21, 2018 .
^ "Apple's A12 Bionic is the first 7-nanometer smartphone chip" . Engadget . Retrieved September 26, 2018 .
^ "Kirin 980 – HiSilicon" . Wikichip . November 8, 2018. Retrieved November 8, 2018 .
^ "Qualcomm Snapdragon 8180: 7nm SoC SDM1000 With 8.5 Billion Transistors To Challenge Apple A12 Bionic Chipset" . dailyhunt. Retrieved September 21, 2018 .
^ Zafar, Ramish (October 30, 2018). "Apple's A12X Has 10 Billion Transistors, 90% Performance Boost & 7-Core GPU" . Wccftech .
^ "Fujitsu began to produce Japan's billions of super-calculations with the strongest ARM processor A64FX" . firstxw.com . April 16, 2019. Archived from the original on June 20, 2019. Retrieved June 19, 2019 .
^ "Fujitsu Successfully Triples the Power Output of Gallium-Nitride Transistors" . Fujitsu . August 22, 2018. Retrieved June 19, 2019 .
^ "Hot Chips 30: Nvidia Xavier SoC" . fuse.wikichip.org . September 18, 2018. Retrieved December 6, 2018 .
^ Frumusanu, Andrei. "The Samsung Galaxy S10+ Snapdragon & Exynos Review: Almost Perfect, Yet So Flawed" . www.anandtech.com . Retrieved February 19, 2021 .
^ a b c d e f "Zen 2 Microarchitecture" . WikiChip . Retrieved February 21, 2023 .
^ "AMD Ryzen 9 3900X and Ryzen 7 3700X Review: Zen 2 and 7nm Unleashed" . Tom's Hardware . July 7, 2019. Retrieved October 19, 2019 .
^ Frumusanu, Andrei. "The Huawei Mate 30 Pro Review: Top Hardware without Google?" . AnandTech . Retrieved January 2, 2020 .
^ Zafar, Ramish (September 10, 2019). "Apple A13 For iPhone 11 Has 8.5 Billion Transistors, Quad-Core GPU" . Wccftech . Retrieved September 11, 2019 .
^ Introducing iPhone 11 Pro — Apple Youtube Video , retrieved September 11, 2019 [dead YouTube link ]
^ "Hot Chips 2020 Live Blog: IBM z15" . AnandTech . August 17, 2020.
^ a b Broekhuijsen, Niels (October 23, 2019). "AMD's 64-Core EPYC and Ryzen CPUs Stripped: A Detailed Inside Look" . Retrieved October 24, 2019 .
^ a b Mujtaba, Hassan (October 22, 2019). "AMD 2nd Gen EPYC Rome Processors Feature A Gargantuan 39.54 Billion Transistors, IO Die Pictured in Detail" . Retrieved October 24, 2019 .
^ Friedman, Alan (December 14, 2019). "5nm Kirin 1020 SoC tipped for next year's Huawei Mate 40 line" . Phone Arena . Retrieved December 23, 2019 .
^ Verheyde, Arne (December 5, 2019). "Amazon Compares 64-core ARM Graviton2 to Intel's Xeon" . Tom's Hardware . Retrieved December 6, 2019 .
^ Morgan, Timothy Prickett (December 3, 2019). "Finally: AWS Gives Servers A Real Shot In The Arm" . The Next Platform . Retrieved December 6, 2019 .
^ Friedman, Alan (October 10, 2019). "Qualcomm will reportedly introduce the Snapdragon 865 SoC as soon as next month" . Phone Arena . Retrieved February 19, 2021 .
^ "Xiaomi Mi 10 Teardown Analysis | TechInsights" . www.techinsights.com . Retrieved February 19, 2021 .
^ "The Linley Group - TI Jacinto Accelerates Level 3 ADAS" . www.linleygroup.com . Retrieved February 12, 2021 .
^ "Apple unveils A14 Bionic processor with 40% faster CPU and 11.8 billion transistors" . Venturebeat . November 10, 2020. Retrieved November 24, 2020 .
^ "Apple says new Arm-based M1 chip offers the 'longest battery life ever in a Mac' " . The Verge . November 10, 2020. Retrieved November 11, 2020 .
^ Ikoba, Jed John (October 23, 2020). "Multiple benchmark tests rank the Kirin 9000 as one of the most-powerful chipset yet" . Gizmochina . Retrieved November 14, 2020 .
^ Frumusanu, Andrei. "Huawei Announces Mate 40 Series: Powered by 15.3bn Transistors 5nm Kirin 9000" . www.anandtech.com . Retrieved November 14, 2020 .
^ a b Burd, Thomas (2022). "2.7 Zen3: The AMD 2nd-Generation 7nm x86-64 Microprocessor Core". Proc. IEEE International Solid-State Circuits Conference . pp. 54– 56.
^ "For a long time, Intel once again named the number of transistors in the chip. There are supposed to be about 6 billion for Rocket Lake-S. Coffee Lake-S is supposed to have about 4 billion. The chip with eight cores is about 30 % bigger than the predecessor with ten core" . twitter . Retrieved March 16, 2021 .
^ "Intel's Core i7-11700K 'Rocket Lake' Delidded: A Big Die, Revealed" . tomshardware . March 12, 2021. Retrieved March 16, 2021 .
^ "Intel's 14nm density" . www.techcenturion.com . November 26, 2019. Retrieved November 26, 2019 .
^ "AMD Ryzen 7 5800H Specs" . TechPowerUp . Retrieved September 20, 2021 .
^ "AMD Epyc 7763 specifications" . August 2023.
^ Shankland, Stephen. "Apple's A15 Bionic chip powers iPhone 13 with 15 billion transistors, new graphics and AI" . CNET . Retrieved September 20, 2021 .
^ "Apple iPhone 13 Pro Teardown | TechInsights" . www.techinsights.com . Retrieved September 29, 2021 .
^ a b "Apple unveils M1 Pro and M1 Max chips for latest MacBook Pro laptops" . VentureBeat . October 18, 2021.
^ "Apple Announces M1 Pro & M1 Max: Giant New Arm SoCs with All-Out Performance" . AnanadTech . Retrieved December 2, 2021 .
^ "Apple unveils new computer chips amid shortage" . BBC News . October 19, 2021.
^ a b "Apple Joins 3D-Fabric Portfolio with M1 Ultra?" . TechInsights . Retrieved July 8, 2022 .
^ "Hot Chips 2020 live blog" . AnandTech . August 17, 2020.
^ "Phantom X2 Series 5G powered by MediaTek Dimensity 9000" . Mediatek . December 12, 2022.
^ "MediaTek Dimensity 9000" . Mediatek . January 21, 2023.
^ "Apple A16 Bionic announced for the iPhone 14 Pro and iPhone 14 Pro Max" . NotebookCheck . September 7, 2022.
^ "iPhone 14 Pro and Pro Max Only Models to Get New A16 Chip" . CNET . September 7, 2022.
^ "The Apple 2022 Fall iPhone Event Live Blog" . AnandTech . September 7, 2022.
^ "Apple unveils M1 Ultra, the world's most powerful chip for a personal computer" . Apple Newsroom . Retrieved March 9, 2022 .
^ Shankland, Stephen. "Meet Apple's Enormous 20-Core M1 Ultra Processor, the Brains in the New Mac Studio Machine" . CNET . Retrieved March 9, 2022 .
^ a b "AMD releases Milan-X CPUs" . AnandTech . March 21, 2022.
^ "IBM Telum Hot Chips slide deck" (PDF) . August 23, 2021.
^ "IBM z16 announcement" . April 5, 2022.
^ "Apple unveils M2, taking the breakthrough performance and capabilities of M1 even further" . Apple . June 6, 2022.
^ "MediaTek Dimensity 9200: New flagship chipset debuts with ARM Cortex-X3 CPU and Immortalis-G715 GPU cores built around TSMC N4P node" . NotebookCheck . November 8, 2022.
^ "Dimensity 9200 specs" . Mediatek . November 8, 2022.
^ "Dimensity 9200 presentation" . Mediatek . November 8, 2022.
^ "AMD EPYC Genoa Gaps Intel Xeon in Stunning Fashion" . ServeTheHome . November 10, 2022.
^ "AMD Aims to Break the ZettaFLOP Barrier by 2035, Lays Down Next-Gen Plans to Resolve Efficiency Problems" . Appuals . February 21, 2023.
^ "AMD Lays The Path To Zettascale Computing: Talks CPU & GPU Performance Plus Efficiency Trends, Next-Gen Chiplet Packaging & More" . WCCFtech . February 20, 2023.
^
"AMD EPYC Genoa & SP5 Platform Leaked – 5nm Zen 4 CCD Measures Roughly 72mm, 12 CCD Package at 5428mm2, Up To 700W Peak Socket Power" . WCCFtech . August 17, 2021.
^
"Leaked AMD Epyc Genoa Docs Reveal 96 Cores, Max TDP of 700W, and Zen 4 Chiplet Dimensions" . HardwareTimes . August 17, 2021.
^ "Kirin 9000S has about 6 billion fewer transistors than Kirin 9000, but its performance is stronger! How did you do it?" . iNews . September 13, 2023. Retrieved September 24, 2023 .
^ "Apple Announces M4 SoC: Latest and Greatest Starts on 2024 iPad Pro" . Anandtech . May 7, 2024.
^ a b c "Apple introduces new M3 chip lineup, starting with the M3, M3 Pro, and M3 Max" . Arstechnica . October 31, 2023.
^ Goldman, Joshua. "Apple A17 Pro Chip: The New Brain Inside iPhone 15 Pro, Pro Max" . CNET . Retrieved September 12, 2023 .
^ "4th Gen Intel Xeon Scalable Sapphire Rapids Leaps Forward" . ServeTheHome . January 10, 2023.
^ "Wie vier Dies zu einem "monolithischen" Sapphire Rapids werden" . hardwareLUXX . February 21, 2022.
^ a b "Apple unveils M2 Pro and M2 Max: next-generation chips for next-level workflows" . Apple (Press release). January 17, 2023.
^ "AMD EPYC Bergamo Launched 128 Cores Per Socket and 1024 Threads Per 1U" . ServeTheHome . June 13, 2023.
^ "AMD Instinct MI300A Accelerators" . AMD . Retrieved January 14, 2024 .
^ Alcorn, Paul (December 6, 2023). "AMD unveils Instinct MI300X GPU and MI300A APU, claims up to 1.6X lead over Nvidia's competing GPUs" . Tom's Hardware . Retrieved January 14, 2024 .
^ Williams, Chris. "Nvidia's Tesla P100 has 15 billion transistors, 21TFLOPS" . www.theregister.co.uk . Retrieved August 12, 2019 .
^ "Famous Graphics Chips: NEC μPD7220 Graphics Display Controller" . IEEE Computer Society . Institute of Electrical and Electronics Engineers . August 22, 2018. Retrieved June 21, 2019 .
^ "GPU History: Hitachi ARTC HD63484. The second graphics processor" . IEEE Computer Society . Institute of Electrical and Electronics Engineers . October 7, 2018. Retrieved June 21, 2019 .
^ "Big Book of Amiga Hardware" .
^ MOS Technology Agnus . ISBN 5511916846 .
^ a b "30 Years of Console Gaming" . Klinger Photography . August 20, 2017. Retrieved June 19, 2019 .
^ "Sega Saturn" . MAME . Retrieved July 18, 2019 .
^ "ASIC CHIPS ARE INDUSTRY'S GAME WINNERS" . The Washington Post . September 18, 1995. Retrieved June 19, 2019 .
^ "Is it Time to Rename the GPU?" . Jon Peddie Research . IEEE Computer Society . July 9, 2018. Retrieved June 19, 2019 .
^ "FastForward Sony Taps LSI Logic for PlayStation Video Game CPU Chip" . FastForward. Retrieved January 29, 2014 .
^ a b "Reality Co-Processor − The Power In Nintendo64" (PDF) . Silicon Graphics . August 26, 1997. Archived from the original (PDF) on May 19, 2020. Retrieved June 18, 2019 .
^ "Imagination PowerVR PCX2 GPU" . VideoCardz.net . Retrieved June 19, 2019 .
^ a b c d e f g h Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics" . PC Gamer . Retrieved June 19, 2019 .
^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am "3D accelerator database" . Vintage 3D . Retrieved July 21, 2019 .
^ "RIVA128 Datasheet" . SGS Thomson Microelectronics . Retrieved July 21, 2019 .
^ a b c Singer, Graham (April 3, 2013). "History of the Modern Graphics Processor, Part 2" . TechSpot . Retrieved July 21, 2019 .
^ "Remembering the Sega Dreamcast" . Bit-Tech . September 29, 2009. Retrieved June 18, 2019 .
^ Weinberg, Neil (September 7, 1998). "Comeback kid" . Forbes . Retrieved June 19, 2019 .
^ Charles, Bertie (1998). "Sega's New Dimension" . Forbes . 162 (5– 9). Forbes Incorporated: 206. The chip, etched in 0.25-micron detail — state-of-the-art for graphics processors — fits 10 million transistors
^ Hagiwara, Shiro; Oliver, Ian (November–December 1999). "Sega Dreamcast: Creating a Unified Entertainment World" . IEEE Micro . 19 (6). IEEE Computer Society : 29– 35. doi :10.1109/40.809375 . Archived from the original on August 23, 2000. Retrieved June 27, 2019 .
^ "VideoLogic Neon 250 4MB" . VideoCardz.net . Retrieved June 19, 2019 .
^ Shimpi, Anand Lal (November 21, 1998). "Fall Comdex '98 Coverage" . AnandTech . Retrieved June 19, 2019 .
^ a b c "EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP" (PDF) . Sony . April 21, 2003. Retrieved June 26, 2019 .
^ "NVIDIA NV10 A3 GPU Specs" . TechPowerUp . Retrieved June 19, 2019 .
^ IGN Staff (November 4, 2000). "Gamecube Versus PlayStation 2" . IGN . Retrieved November 22, 2015 .
^ "NVIDIA NV2A GPU Specs" . TechPowerUp . Retrieved July 21, 2019 .
^ "ATI Xenos GPU Specs" . TechPowerUp . Retrieved June 21, 2019 .
^ International, GamesIndustry (July 14, 2005). "TSMC to manufacture X360 GPU" . Eurogamer . Retrieved August 22, 2006 .
^ "NVIDIA Playstation 3 RSX 65nm Specs" . TechPowerUp . Retrieved June 21, 2019 .
^ "PS3 Graphics Chip Goes 65nm in Fall" . Edge Online. June 26, 2008. Archived from the original on July 25, 2008.
^ "NVIDIA's 1.4 Billion Transistor GPU: GT200 Arrives as the GeForce GTX 280 & 260" . AnandTech.com. Retrieved August 9, 2014 .
^ "The Radeon HD 4850 & 4870: AMD Wins at $199 and $299" . AnandTech.com. Retrieved August 9, 2014 .
^ a b Glaskowsky, Peter. "ATI and Nvidia face off-obliquely" . CNET. Archived from the original on January 27, 2012. Retrieved August 9, 2014 .
^ Woligroski, Don (December 22, 2011). "AMD Radeon HD 7970" . TomsHardware.com. Retrieved August 9, 2014 .
^ "NVIDIA Kepler GK110 Architecture" (PDF) . NVIDIA . 2012. Retrieved January 9, 2024 .
^ Smith, Ryan (November 12, 2012). "NVIDIA Launches Tesla K20 & K20X: GK110 Arrives At Last" . AnandTech .
^ "Whitepaper: NVIDIA GeForce GTX 680" (PDF) . NVIDIA. 2012. Archived from the original (PDF) on April 17, 2012.
^ a b Kan, Michael (August 18, 2020). "Xbox Series X May Give Your Wallet a Workout Due to High Chip Manufacturing Costs" . PCMag . Retrieved September 5, 2020 .
^ "AMD Xbox One GPU" . www.techpowerup.com . Retrieved February 5, 2020 .
^ "AMD PlayStation 4 GPU" . www.techpowerup.com . Retrieved February 5, 2020 .
^ "AMD Xbox One S GPU" . www.techpowerup.com . Retrieved February 5, 2020 .
^ "AMD PlayStation 4 Pro GPU" . www.techpowerup.com . Retrieved February 5, 2020 .
^ Smith, Ryan (June 29, 2016). "The AMD RX 480 Preview" . Anandtech.com. Retrieved February 22, 2017 .
^ a b c Schor, David (July 22, 2018). "VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP" . WikiChip Fuse . Retrieved May 31, 2019 .
^ Harris, Mark (April 5, 2016). "Inside Pascal: NVIDIA's Newest Computing Platform" . Nvidia developer blog .
^ a b c d e f "GPU Database: Pascal" . TechPowerUp . July 26, 2023.
^ "AMD Xbox One X GPU" . www.techpowerup.com . Retrieved February 5, 2020 .
^ "Radeon's next-generation Vega architecture" (PDF) .
^ Durant, Luke; Giroux, Olivier; Harris, Mark; Stam, Nick (May 10, 2017). "Inside Volta: The World's Most Advanced Data Center GPU" . Nvidia developer blog .
^ "NVIDIA TURING GPU ARCHITECTURE: Graphics Reinvented" (PDF) . Nvidia . 2018. Retrieved June 28, 2019 .
^ "NVIDIA GeForce GTX 1650" . www.techpowerup.com . Retrieved February 5, 2020 .
^ "NVIDIA GeForce GTX 1660 Ti" . www.techpowerup.com . Retrieved February 5, 2020 .
^ "AMD Radeon RX 5700 XT" . www.techpowerup.com . Retrieved February 5, 2020 .
^ "AMD Radeon RX 5500 XT" . www.techpowerup.com . Retrieved February 5, 2020 .
^ "AMD Arcturus GPU Specs" . TechPowerUp . Retrieved November 10, 2022 .
^ Walton, Jared (May 14, 2020). "Nvidia Unveils Its Next-Generation 7nm Ampere A100 GPU for Data Centers, and It's Absolutely Massive" . Tom's Hardware .
^ "Nvidia Ampere Architecture" . www.nvidia.com . Retrieved May 15, 2020 .
^ "NVIDIA GA102 GPU Specs" . Techpowerup . Retrieved September 5, 2020 .
^ " 'Giant Step into the Future': NVIDIA CEO Unveils GeForce RTX 30 Series GPUs" . www.nvidia.com . September 2020. Retrieved September 5, 2020 .
^ "NVIDIA GA103 GPU Specs" . TechPowerUp . Retrieved March 21, 2023 .
^ "NVIDIA GeForce RTX 3070 Specs" . TechPowerUp . Retrieved September 20, 2021 .
^
"NVIDIA GA106 specs" . TechPowerUp . Retrieved March 22, 2023 .
^ "NVIDIA GA107 GPU Specs" . TechPowerUp . Retrieved March 21, 2023 .
^ "MI250X die size estimates" . Twitter . November 17, 2021.
^
"AMD Instinct MI250 Professional Graphics Card" . VideoCardz . November 2, 2022.
^
"AMD's Instinct MI250X OAM Card Pictured: Aldebaran's Massive Die Revealed" . Tom's Hardware . November 17, 2021.
^ "AMD MI250X and Toplogies Explained at HC34" . ServeTheHome . August 22, 2022.
^ "Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips" . HPCWire . March 22, 2022. Retrieved March 23, 2022 .
^ "NVIDIA details AD102 GPU, up to 18432 CUDA cores, 76.3B transistors and 608 mm2 " . VideoCardz . September 20, 2022.
^ a b "NVIDIA confirms Ada 102/103/104 GPU specs, AD104 has more transistors than GA102" . VideoCardz . September 23, 2022.
^ a b "Alleged Nvidia AD106 and AD107 GPU Pics, Specs, Die Sizes Revealed" . Tom's Hardware . February 3, 2023.
^ "NVIDIA GeForce RTX 4060 Ti "AD106-350" GPU Pictured, Uses Samsung GDDR6 Dies" . WCCFtech . April 28, 2023.
^ "NVIDIA's Smallest Ada GPU, The AD107-400, For GeForce RTX 4060 GPUs Pictured" . WCCFtech . May 21, 2023.
^ "AMD Unveils World's Most Advanced Gaming Graphics Cards, Built on Groundbreaking AMD RDNA 3 Architecture with Chiplet Design" . AMD (Press release). November 3, 2022.
^ "AMD Announces the $999 Radeon RX 7900 XTX... (endnote RX-819)" . TechPowerUp . November 4, 2022.
^ "AMD Navi 31 GPU Specs" . TechPowerUp . Retrieved November 7, 2023 .
^ "AMD Navi 32 GPU Specs" . TechPowerUp . Retrieved November 7, 2023 .
^ "AMD Navi 33 GPU Specs" . TechPowerUp . Retrieved March 21, 2023 .
^ "AMD Has a GPU to Rival Nvidia's H100" . HPCWire . June 13, 2023. Retrieved June 14, 2023 .
^ "AMD Aqua Vanjaram Specs" . TechPowerUp . Retrieved January 14, 2024 .
^ "NVIDIA Blackwell Platform Arrives to Power a New Era of Computing" (Press release). March 18, 2024.
^ "Taiwan Company UMC Delivers 65nm FPGAs to Xilinx ." SDA-ASIA Thursday, November 9, 2006.
^ ""Altera's new 40nm FPGAs — 2.5 billion transistors!" . pldesignline.com . Archived from the original on June 19, 2010. Retrieved January 22, 2009 .
^ "Design of a High-Density SoC FPGA at 20nm" (PDF) . 2014. Archived from the original (PDF) on April 23, 2016. Retrieved July 16, 2017 .
^ Maxfield, Clive (October 2011). "New Xilinx Virtex-7 2000T FPGA provides equivalent of 20 million ASIC gates" . EETimes . AspenCore. Retrieved September 4, 2019 .
^ Greenhill, D.; Ho, R.; Lewis, D.; Schmit, H.; Chan, K. H.; Tong, A.; Atsatt, S.; How, D.; McElheny, P. (February 2017). "3.3 a 14nm 1GHz FPGA with 2.5D transceiver integration". 2017 IEEE International Solid-State Circuits Conference (ISSCC) . pp. 54– 55. doi :10.1109/ISSCC.2017.7870257 . ISBN 978-1-5090-3758-2 . S2CID 2135354 .
^ "3.3 A 14nm 1GHz FPGA with 2.5D transceiver integration | DeepDyve" . May 17, 2017. Archived from the original on May 17, 2017. Retrieved September 19, 2019 .
^ Santarini, Mike (May 2014). "Xilinx Ships Industry's First 20-nm All Programmable Devices" (PDF) . Xcell journal . No. 86. Xilinx . p. 14. Retrieved June 3, 2014 .
^ Gianelli, Silvia (January 2015). "Xilinx Delivers the Industry's First 4M Logic Cell Device, Offering >50M Equivalent ASIC Gates and 4X More Capacity than Competitive Alternatives" . www.xilinx.com . Retrieved August 22, 2019 .
^ Sims, Tara (August 2019). "Xilinx Announces the World's Largest FPGA Featuring 9 Million System Logic Cells" . www.xilinx.com . Retrieved August 22, 2019 .
^ Verheyde, Arne (August 2019). "Xilinx Introduces World's Largest FPGA With 35 Billion Transistors" . www.tomshardware.com . Retrieved August 23, 2019 .
^ Cutress, Ian (August 2019). "Xilinx Announces World Largest FPGA: Virtex Ultrascale+ VU19P with 9m Cells" . www.anandtech.com . Retrieved September 25, 2019 .
^ Abazovic, Fuad (May 2019). "Xilinx 7nm Versal taped out last year" . Retrieved September 30, 2019 .
^ Cutress, Ian (August 2019). "Hot Chips 31 Live Blogs: Xilinx Versal AI Engine" . Retrieved September 30, 2019 .
^ Krewell, Kevin (August 2019). "Hot Chips 2019 highlights new AI strategies" . Retrieved September 30, 2019 .
^ Leibson, Steven (November 6, 2019). "Intel announces Intel Stratix 10 GX 10M FPGA, worlds highest capacity with 10.2 million logic elements" . Retrieved November 7, 2019 .
^ Verheyde, Arne (November 6, 2019). "Intel Introduces World's Largest FPGA With 43.3 Billion Transistors" . Retrieved November 7, 2019 .
^ Cutress, Ian (August 2020). "Hot Chips 2020 Live Blog: Xilinx Versal ACAPs" . Retrieved September 9, 2020 .
^ "Xilinx Announces Full Production Shipments of 7nm Versal AI Core and Versal Prime Series Devices" . April 27, 2021. Retrieved May 8, 2021 .
^ a b The DRAM memory of Robert Dennard history-computer.com
^ a b c d "Late 1960s: Beginnings of MOS memory" (PDF) . Semiconductor History Museum of Japan . January 23, 2019. Retrieved June 27, 2019 .
^ a b c d e f "1970: Semiconductors compete with magnetic cores" . Computer History Museum . Retrieved June 19, 2019 .
^ "2.1.1 Flash Memory" . TU Wien . Retrieved June 20, 2019 .
^ Shilov, Anton. "SK Hynix Starts Production of 128-Layer 4D NAND, 176-Layer Being Developed" . www.anandtech.com . Retrieved September 16, 2019 .
^ "Samsung Begins Production of 100+ Layer Sixth-Generation V-NAND Flash" . PC Perspective . August 11, 2019. Retrieved September 16, 2019 .
^ a b "1966: Semiconductor RAMs Serve High-speed Storage Needs" . Computer History Museum . Retrieved June 19, 2019 .
^ "Specifications for Toshiba "TOSCAL" BC-1411" . Old Calculator Web Museum . Archived from the original on July 3, 2017. Retrieved May 8, 2018 .
^ "Toshiba "Toscal" BC-1411 Desktop Calculator" . Old Calculator Web Museum . Archived from the original on May 20, 2007.
^ Castrucci, Paul (May 10, 1966). "IBM first in IC memory" (PDF) . IBM News . Vol. 3, no. 9. IBM Corporation. Retrieved June 19, 2019 – via Computer History Museum .
^ a b c d e f g h i j k l m "A chronological list of Intel products. The products are sorted by date" (PDF) . Intel museum . Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007 .
^ a b "1970s: SRAM evolution" (PDF) . Semiconductor History Museum of Japan . Retrieved June 27, 2019 .
^ a b c Pimbley, J. (2012). Advanced CMOS Process Technology . Elsevier . p. 7. ISBN 9780323156806 .
^ a b "Intel: 35 Years of Innovation (1968–2003)" (PDF) . Intel. 2003. Archived from the original (PDF) on November 4, 2021. Retrieved June 26, 2019 .
^ a b Lojek, Bo (2007). History of Semiconductor Engineering . Springer Science & Business Media . pp. 362– 363. ISBN 9783540342588 . The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 μm2 memory cell size, a die size just under 10 mm2 , and sold for around $21.
^ "Manufacturers in Japan enter the DRAM market and integration densities are improved" (PDF) . Semiconductor History Museum of Japan . Retrieved June 27, 2019 .
^ a b c d e f g h i j k l m n Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF) . Massachusetts Institute of Technology . pp. 149– 166. Retrieved June 25, 2019 – via CORE .
^ "Silicon Gate MOS 2102A" . Intel . Retrieved June 27, 2019 .
^ "One of the Most Successful 16K Dynamic RAMs: The 4116" . National Museum of American History . Smithsonian Institution . Retrieved June 20, 2019 .
^ Component Data Catalog (PDF) . Intel . 1978. pp. 3– 94. Retrieved June 27, 2019 .
^ a b c d e f g h i j k l m n o p q r s t "Memory" . STOL (Semiconductor Technology Online) . Archived from the original on November 2, 2023. Retrieved June 25, 2019 .
^ "The Cutting Edge of IC Technology: The First 294,912-Bit (288K) Dynamic RAM" . National Museum of American History . Smithsonian Institution . Retrieved June 20, 2019 .
^ "Computer History for 1984" . Computer Hope . Retrieved June 25, 2019 .
^ "Japanese Technical Abstracts" . Japanese Technical Abstracts . 2 (3– 4). University Microfilms: 161. 1987. The announcement of 1M DRAM in 1984 began the era of megabytes.
^ "KM48SL2000-7 Datasheet" . Samsung . August 1992. Retrieved June 19, 2019 .
^ "Electronic Design" . Electronic Design . 41 (15– 21). Hayden Publishing Company. 1993. The first commercial synchronous DRAM, the Samsung 16-Mbit KM48SL2000, employs a single-bank architecture that lets system designers easily transition from asynchronous to synchronous systems.
^ Breaking the gigabit barrier, DRAMs at ISSCC portend major system-design impact. (dynamic random access memory; International Solid-State Circuits Conference; Hitachi Ltd. and NEC Corp. research and development) , January 9, 1995
^ a b "Japanese Company Profiles" (PDF) . Smithsonian Institution . 1996. Retrieved June 27, 2019 .
^ a b "History: 1990s" . SK Hynix . Archived from the original on February 5, 2021. Retrieved July 6, 2019 .
^ "Samsung 50nm 2GB DDR3 chips are industry's smallest" . SlashGear . September 29, 2008. Retrieved June 25, 2019 .
^ Shilov, Anton (July 19, 2017). "Samsung Increases Production Volumes of 8 GB HBM2 Chips Due to Growing Demand" . AnandTech . Retrieved June 29, 2019 .
^ "Samsung Unleashes a Roomy DDR4 256GB RAM" . Tom's Hardware . September 6, 2018. Archived from the original on June 21, 2019. Retrieved June 21, 2019 .
^ "First 3D Nanotube and RRAM ICs Come Out of Foundry" . IEEE Spectrum: Technology, Engineering, and Science News . July 19, 2019. Retrieved September 16, 2019 . This wafer was made just last Friday... and it's the first monolithic 3D IC ever fabricated within a foundry
^ "Three Dimensional Monolithic System-on-a-Chip" . www.darpa.mil . Retrieved September 16, 2019 .
^ "DARPA 3DSoC Initiative Completes First Year, Update Provided at ERI Summit on Key Steps Achieved to Transfer Technology into SkyWater's 200mm U.S. Foundry" . Skywater Technology Foundry (Press release). July 25, 2019. Retrieved September 16, 2019 .
^ "DD28F032SA Datasheet" . Intel . Retrieved June 27, 2019 .
^ "TOSHIBA ANNOUNCES 0.13 MICRON 1Gb MONOLITHIC NAND FEATURING LARGE BLOCK SIZE FOR IMPROVED WRITE/ERASE SPEED PERFORMANCE" . Toshiba . September 9, 2002. Archived from the original on March 11, 2006. Retrieved March 11, 2006 .
^ "TOSHIBA AND SANDISK INTRODUCE A ONE GIGABIT NAND FLASH MEMORY CHIP, DOUBLING CAPACITY OF FUTURE FLASH PRODUCTS" . Toshiba . November 12, 2001. Retrieved June 20, 2019 .
^ a b c d "Our Proud Heritage from 2000 to 2009" . Samsung Semiconductor . Samsung . Retrieved June 25, 2019 .
^ "TOSHIBA ANNOUNCES 1 GIGABYTE COMPACTFLASH CARD" . Toshiba . September 9, 2002. Archived from the original on March 11, 2006. Retrieved March 11, 2006 .
^ a b c d "History" . Samsung Electronics . Samsung . Retrieved June 19, 2019 .
^ a b "TOSHIBA COMMERCIALIZES INDUSTRY'S HIGHEST CAPACITY EMBEDDED NAND FLASH MEMORY FOR MOBILE CONSUMER PRODUCTS" . Toshiba . April 17, 2007. Archived from the original on November 23, 2010. Retrieved November 23, 2010 .
^ a b "Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices" . Toshiba . August 7, 2008. Retrieved June 21, 2019 .
^ "Toshiba Launches Industry's Largest Embedded NAND Flash Memory Modules" . Toshiba . June 17, 2010. Retrieved June 21, 2019 .
^ "Samsung e·MMC Product family" (PDF) . Samsung Electronics . December 2011. Archived from the original (PDF) on November 8, 2019. Retrieved July 15, 2019 .
^ Shilov, Anton (December 5, 2017). "Samsung Starts Production of 512 GB UFS NAND Flash Memory: 64-Layer V-NAND, 860 MB/s Reads" . AnandTech . Retrieved June 23, 2019 .
^ Manners, David (January 30, 2019). "Samsung makes 1TB flash eUFS module" . Electronics Weekly . Retrieved June 23, 2019 .
^ Tallis, Billy (October 17, 2018). "Samsung Shares SSD Roadmap for QLC NAND And 96-layer 3D NAND" . AnandTech . Retrieved June 27, 2019 .
^ "Micron's 232 Layer NAND Now Shipping" . AnandTech . July 26, 2022.
^ "232-Layer NAND" . Micron . Retrieved October 17, 2022 .
^ "First to Market, Second to None: the World's First 232-Layer NAND" . Micron . July 26, 2022.
^ "Comparison: Latest 3D NAND Products from YMTC, Samsung, SK hynix and Micron" . TechInsights . January 11, 2023.
^ Han-Way Huang (December 5, 2008). Embedded System Design with C805 . Cengage Learning. p. 22. ISBN 978-1-111-81079-5 . Archived from the original on April 27, 2018.
^ Marie-Aude Aufaure; Esteban Zimányi (January 17, 2013). Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lectures . Springer. p. 136. ISBN 978-3-642-36318-4 . Archived from the original on April 27, 2018.
^ a b c d "1965: Semiconductor Read-Only-Memory Chips Appear" . Computer History Museum . Retrieved June 20, 2019 .
^ "1971: Reusable semiconductor ROM introduced" . The Storage Engine . Computer History Museum . Retrieved June 19, 2019 .
^ Iizuka, H.; Masuoka, F.; Sato, Tai; Ishikawa, M. (1976). "Electrically alterable avalanche-injection-type MOS READ-ONLY memory with stacked-gate structure". IEEE Transactions on Electron Devices . 23 (4): 379– 387. Bibcode :1976ITED...23..379I . doi :10.1109/T-ED.1976.18415 . ISSN 0018-9383 . S2CID 30491074 .
^ μCOM-43 SINGLE CHIP MICROCOMPUTER: USERS' MANUAL (PDF) . NEC Microcomputers . January 1978. Retrieved June 27, 2019 .
^ "2716: 16K (2K x 8) UV ERASABLE PROM" (PDF) . Intel. Archived from the original (PDF) on September 13, 2020. Retrieved June 27, 2019 .
^ "1982 CATALOG" (PDF) . NEC Electronics . Retrieved June 20, 2019 .
^ Component Data Catalog (PDF) . Intel . 1978. pp. 1– 3. Retrieved June 27, 2019 .
^ "27256 Datasheet" (PDF) . Intel . Retrieved July 2, 2019 .
^ "History of Fujitsu's Semiconductor Business" . Fujitsu . Retrieved July 2, 2019 .
^ "D27512-30 Datasheet" (PDF) . Intel . Retrieved July 2, 2019 .
^ "A Computer Pioneer Rediscovered, 50 Years On" . The New York Times . April 20, 1994. Archived from the original on November 4, 2016.
^ "History of Computers and Computing, Birth of the modern computer, Relays computer, George Stibitz" . history-computer.com . Retrieved August 22, 2019 . Initially the 'Complex Number Computer' performed only complex multiplication and division, but later a simple modification enabled it to add and subtract as well. It used about 400-450 binary relays, 6-8 panels, and ten multiposition, multipole relays called "crossbars" for temporary storage of numbers.
^ a b c d e "1953: Transistorized Computers Emerge" . Computer History Museum . Retrieved June 19, 2019 .
^ a b "ETL Mark III Transistor-Based Computer" . IPSJ Computer Museum . Information Processing Society of Japan . Retrieved June 19, 2019 .
^ a b "Brief History" . IPSJ Computer Museum . Information Processing Society of Japan . Retrieved June 19, 2019 .
^ "1962: Aerospace systems are first the applications for ICs in computers | The Silicon Engine | Computer History Museum" . www.computerhistory.org . Retrieved September 2, 2019 .
^ a b "PDP-8 (Straight 8) Computer Functional Restoration" . www.pdp8.net . Retrieved August 22, 2019 . backplanes contain 230 cards, approximately 10,148 diodes, 1409 transistors, 5615 resistors, and 1674 capacitors
^ "IBM 608 calculator" . IBM . January 23, 2003. Retrieved March 8, 2021 .
^ "【NEC】 NEAC-2201" . IPSJ Computer Museum . Information Processing Society of Japan . Retrieved June 19, 2019 .
^ "【Hitachi and Japanese National Railways】 MARS-1" . IPSJ Computer Museum . Information Processing Society of Japan . Retrieved June 19, 2019 .
^ The IBM 7070 Data Processing System. Avery et al. (page 167)
^ "【Matsushita Electric Industrial】 MADIC-I transistor-based computer" . IPSJ Computer Museum . Information Processing Society of Japan . Retrieved June 19, 2019 .
^ "【NEC】 NEAC-2203" . IPSJ Computer Museum . Information Processing Society of Japan . Retrieved June 19, 2019 .
^ "【Toshiba】 TOSBAC-2100" . IPSJ Computer Museum . Information Processing Society of Japan . Retrieved June 19, 2019 .
^ 7090 Data Processing System
^
Luigi Logrippo.
"My first two computers: Elea 9003 and Elea 6001: Memories of a 'bare-metal' programmer" .
^ "【Mitsubishi Electric】 MELCOM 1101" . IPSJ Computer Museum . Information Processing Society of Japan . Retrieved June 19, 2019 .
^ Erich Bloch (1959). The Engineering Design of the Stretch Computer (PDF) . Eastern Joint Computer Conference.
^ "【NEC】NEAC-L2" . IPSJ Computer Museum . Information Processing Society of Japan . Retrieved June 19, 2019 .
^ Thornton, James (1970). Design of a Computer: the Control Data 6600 . p. 20.
^
"Digital Equipment PDP-8/S" .
^
"The PDP-8/S - an exercise in cost reduction"
^
"PDP-8/S"
^
"The Digital Equipment Corporation PDP-8: Models and Options: The PDP-8/I" .
^
James F. O'Loughlin.
"PDP-8/I: bigger on the inside yet smaller on the outside" .
^ Jan M. Rabaey, Digital Integrated Circuits, Fall 2001: Course Notes, Chapter 6: Designing Combinatorial Logic Gates in CMOS , retrieved October 27, 2012.
^ Richard F. Tinder (January 2000). Engineering Digital Design . Academic Press. ISBN 978-0-12-691295-1 .
^ a b c d Engineers, Institute of Electrical Electronics (2000). 100-2000 (7th ed.). doi :10.1109/IEEESTD.2000.322230 . ISBN 978-0-7381-2601-2 . IEEE Std 100-2000.
^ a b c
Smith, Kevin (August 11, 1983). "Image processor handles 256 pixels simultaneously". Electronics .
^
Kanellos, Michael (February 9, 2005). "Cell chip: Hit or hype?" . CNET News . Archived from the original on October 25, 2012.
^ Kennedy, Patrick (June 2019). "Hands-on With a Graphcore C2 IPU PCIe Card at Dell Tech World" . servethehome.com . Retrieved December 29, 2019 .
^ "Colossus – Graphcore" . en.wikichip.org . Retrieved December 29, 2019 .
^ Graphcore. "IPU Technology" . www.graphcore.ai .
^ "Cerebras Unveils 2nd Gen Wafer Scale Engine: 850,000 Cores, 2.6 Trillion Transistors - ExtremeTech" . www.extremetech.com . April 21, 2021. Retrieved April 22, 2021 .
^ "Cerebras Wafer Scale Engine WSE-2 and CS-2 at Hot Chips 34" . ServeTheHome . August 23, 2022.
^ "NVIDIA NVLink4 NVSwitch at Hot Chips 34" . ServeTheHome . August 22, 2022.
^ a b Schor, David (April 6, 2019). "TSMC Starts 5-Nanometer Risk Production" . WikiChip Fuse . Retrieved April 7, 2019 .
^ "1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated" . Computer History Museum . Retrieved July 17, 2019 .
^ Lojek, Bo (2007). History of Semiconductor Engineering . Springer Science & Business Media . pp. 321– 3. ISBN 9783540342588 .
^ "1963: Complementary MOS Circuit Configuration is Invented" . Computer History Museum . Retrieved July 6, 2019 .
^ "1964: First Commercial MOS IC Introduced" . Computer History Museum . Retrieved July 17, 2019 .
^ a b Lojek, Bo (2007). History of Semiconductor Engineering . Springer Science & Business Media . p. 330. ISBN 9783540342588 .
^ Lambrechts, Wynand; Sinha, Saurabh; Abdallah, Jassem Ahmed; Prinsloo, Jaco (2018). Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques . CRC Press . p. 59. ISBN 9781351248655 .
^ Belzer, Jack; Holzman, Albert G.; Kent, Allen (1978). Encyclopedia of Computer Science and Technology: Volume 10 – Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification . CRC Press . p. 402. ISBN 9780824722609 .
^ "Intel Microprocessor Quick Reference Guide" . Intel . Retrieved June 27, 2019 .
^ "1978: Double-well fast CMOS SRAM (Hitachi)" (PDF) . Semiconductor History Museum of Japan . Retrieved July 5, 2019 .
^ "0.18-micron Technology" . TSMC . Retrieved June 30, 2019 .
^ a b c d 65nm CMOS Process Technology
^ Diefendorff, Keith (15 November 1999). "Hal Makes Sparcs Fly". Microprocessor Report , Volume 13, Number 5.
^ a b Cutress, Ian. "Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review" . AnandTech . Retrieved June 19, 2019 .
^ "Samsung Shows Industry's First 2-Gigabit DDR2 SDRAM" . Samsung Semiconductor . Samsung . September 20, 2004. Retrieved June 25, 2019 .
^ Williams, Martyn (July 12, 2004). "Fujitsu, Toshiba begin 65nm chip trial production" . InfoWorld . Retrieved June 26, 2019 .
^ Elpida's presentation at Via Technology Forum 2005 and Elpida 2005 Annual Report
^ "Fujitsu Introduces World-class 65-Nanometer Process Technology for Advanced Server, Mobile Applications" . Archived from the original on September 27, 2011. Retrieved June 20, 2019 .
^ a b c d "Intel Now Packs 100 Million Transistors in Each Square Millimeter" . IEEE Spectrum: Technology, Engineering, and Science News . March 30, 2017. Retrieved November 14, 2018 .
^ "40nm Technology" . TSMC . Retrieved June 30, 2019 .
^ "Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology" . Toshiba . February 11, 2009. Retrieved June 21, 2019 .
^ a b "History: 2010s" . SK Hynix . Archived from the original on April 29, 2021. Retrieved July 8, 2019 .
^ Shimpi, Anand Lal (June 8, 2012). "SandForce Demos 19nm Toshiba & 20nm IMFT NAND Flash" . AnandTech . Retrieved June 19, 2019 .
^ a b Schor, David (April 16, 2019). "TSMC Announces 6-Nanometer Process" . WikiChip Fuse . Retrieved May 31, 2019 .
^ "16/12nm Technology" . TSMC . Retrieved June 30, 2019 .
^ a b c "VLSI 2018: Samsung's 8nm 8LPP, a 10nm extension" . WikiChip Fuse . July 1, 2018. Retrieved May 31, 2019 .
^ "Samsung Mass Producing 128Gb 3-bit MLC NAND Flash" . Tom's Hardware . April 11, 2013. Archived from the original on June 21, 2019. Retrieved June 21, 2019 .
^ "10nm Technology" . TSMC . Retrieved June 30, 2019 .
^ a b c d e f g h i "Can TSMC maintain their process technology lead" . SemiWiki . April 29, 2020.
^ a b Jones, Scotten (May 3, 2019). "TSMC and Samsung 5nm Comparison" . Semiwiki . Retrieved July 30, 2019 .
^ a b c Nenni, Daniel (January 2, 2019). "Samsung vs TSMC 7nm Update" . Semiwiki . Retrieved July 6, 2019 .
^ "7nm Technology" . TSMC . Retrieved June 30, 2019 .
^ Schor, David (June 15, 2018). "A Look at Intel's 10nm Std Cell as TechInsights Reports on the i3-8121U, finds Ruthenium" . WikiChip Fuse . Retrieved May 31, 2019 .
^ a b "Samsung Foundry update 2019" . SemiWiki . August 6, 2019.
^ Jones, Scotten, 7nm, 5nm and 3nm Logic, current and projected processes
^ Shilov, Anton. "Samsung Completes Development of 5nm EUV Process Technology" . AnandTech . Retrieved May 31, 2019 .
^ a b c d "Samsung Foundry Innovations Power the Future of Big Data, AI/ML and Smart, Connected Devices" . October 7, 2021.
^ "Qualcomm confirms Snapdragon 8 Gen 1 is made using Samsung's 4nm process" . December 2, 2021.
^ "List of Snapdragon 8 Gen 1 smartphones available since December 2021" . January 14, 2022.
^ a b "TSMC Extends Its 5nm Family With A New Enhanced-Performance N4P Node" . WikiChip . October 26, 2021.
^ "MediaTek Launches Dimensity 9000 built on TSMC N4 process" . December 16, 2021.
^ "TSMC Expands Advanced Technology Leadership with N4P Process (press release)" . TSMC . October 26, 2021.
^ Armasu, Lucian (January 11, 2019), "Samsung Plans Mass Production of 3nm GAAFET Chips in 2021" , www.tomshardware.com
^ "Samsung Starts 3nm Production: The Gate-All-Around (GAAFET) Era Begins" . AnandTech . June 30, 2022.
^ "TSMC Plans New Fab for 3nm" . EE Times . December 12, 2016. Retrieved September 26, 2019 .
^ a b c "TSMC Roadmap Update: 3nm in Q1 2023, 3nm Enhanced in 2024, 2nm in 2025" . www.anandtech.com . October 18, 2021.
^ "TSMC Introduces N4X Process (press release)" . TSMC . December 16, 2021.
^ "The Future Is Now (blog post)" . TSMC . December 16, 2021.
^ "TSMC Unveils N4X Node" . AnandTech . December 17, 2021.
^ a b "TSMC roadmap update" . AnandTech . April 22, 2022.
^ Smith, Ryan (June 13, 2022). "Intel 4 Process Node In Detail: 2x Density Scaling, 20% Improved Performance" . AnandTech .
^ Alcorn, Paul (March 24, 2021). "Intel Fixes 7nm, Meteor Lake and Granite Rapids Coming in 2023" . Tom's Hardware . Retrieved June 1, 2021 .
^ a b c d Cutress, Dr Ian. "Intel's Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!" . www.anandtech.com . Retrieved July 27, 2021 .
^ a b c Cutress, Dr Ian (February 17, 2022). "Intel Discloses Multi-Generation Xeon Scalable Roadmap: New E-Core Only Xeons in 2024" . www.anandtech.com .
^ "Samsung Electronics Unveils Plans for 1.4nm Process Technology and Investment for Production Capacity at Samsung Foundry Forum 2022" . Samsung Global Newsroom . October 4, 2022.
External links
GPU
Architecture Components Memory Form factor Performance Misc