Pectin is composed of complex polysaccharides that are present in the primary cell walls of a plant, and are abundant in the green parts of terrestrial plants.[5]
Pectin is the principal component of the middle lamella, where it binds cells. Pectin is deposited by exocytosis into the cell wall via vesicles produced in the Golgi apparatus.[6] The amount, structure and chemical composition of pectin is different among plants, within a plant over time, and in various parts of a plant. Pectin is an important cell wall polysaccharide that allows primary cell wall extension and plant growth.[7] During fruit ripening, pectin is broken down by the enzymespectinase and pectinesterase, in which process the fruit becomes softer as the middle lamellae break down and cells become separated from each other.[8] A similar process of cell separation caused by the breakdown of pectin occurs in the abscission zone of the petioles of deciduous plants at leaf fall.[citation needed]
Pectin is a natural part of the human diet, but does not contribute significantly to nutrition. The daily intake of pectin from fruits and vegetables can be estimated to be around 5 g if approximately 500 g of fruits and vegetables are consumed per day.[citation needed]
In human digestion, pectin binds to cholesterol in the gastrointestinal tract and slows glucose absorption by trapping carbohydrates. Pectin is thus a soluble dietary fiber. In non-obese diabetic (NOD) mice pectin has been shown to increase the incidence of autoimmune type 1 diabetes.[9]
A study found that after consumption of fruit the concentration of methanol in the human body increased by as much as an order of magnitude due to the degradation of natural pectin (which is esterified with methanol) in the colon.[10]
Pectin has been observed to have some function in repairing the DNA of some types of plant seeds, usually desert plants.[11] Pectinaceous surface pellicles, which are rich in pectin, create a mucilage layer that holds in dew that helps the cell repair its DNA.[12]
Consumption of pectin has been shown to slightly (3–7%) reduce blood LDL cholesterol levels. The effect depends upon the source of pectin; apple and citrus pectins were more effective than orange pulp fibre pectin.[13] The mechanism appears to be an increase of viscosity in the intestinal tract, leading to a reduced absorption of cholesterol from bile or food.[14] In the large intestine and colon, microorganisms degrade pectin and liberate short-chain fatty acids that have positive influence on health (prebiotic effect).[15]
Chemistry
Pectins, also known as pectic polysaccharides, are rich in galacturonic acid. Several distinct polysaccharides have been identified and characterised within the pectic group. Homogalacturonans are linear chains of α-(1–4)-linked D-galacturonic acid.[16] Substituted galacturonans are characterised by the presence of saccharide appendant residues (such as D-xylose or D-apiose in the respective cases of xylogalacturonan and apiogalacturonan) branching from a backbone of D-galacturonic acid residues.[16][17] Rhamnogalacturonan I pectins (RG-I) contain a backbone of the repeating disaccharide: 4)-α-D-galacturonic acid-(1,2)-α-L-rhamnose-(1. From many of the rhamnose residues, sidechains of various neutral sugars branch off. The neutral sugars are mainly D-galactose, L-arabinose and D-xylose, with the types and proportions of neutral sugars varying with the origin of pectin.[16][17][18]
Another structural type of pectin is rhamnogalacturonan II (RG-II), which is a less frequent, complex, highly branched polysaccharide.[19] Rhamnogalacturonan II is classified by some authors within the group of substituted galacturonans since the rhamnogalacturonan II backbone is made exclusively of D-galacturonic acid units.[17]
The molecular weight of isolated pectine greatly varies by the source and the method of isolation.[20] Values have been reported as low as 28 kDa for apple pomace [21] up to 753 kDa for sweet potato peels.[22]
In nature, around 80 percent of carboxyl groups of galacturonic acid are esterified with methanol. This proportion is decreased to a varying degree during pectin extraction. Pectins are classified as high- versus low-methoxy pectins (short HM-pectins versus LM-pectins), with more or less than half of all the galacturonic acid esterified.[23] The ratio of esterified to non-esterified galacturonic acid determines the behaviour of pectin in food applications – HM-pectins can form a gel under acidic conditions in the presence of high sugar concentrations, while LM-pectins form gels by interaction with divalent cations, particularly Ca2+, according to the idealized 'egg box' model, in which ionic bridges are formed between calcium ions and the ionised carboxyl groups of the galacturonic acid.[24][25][23]
In high-methoxy pectins at soluble solids content above 60% and a pH value between 2.8 and 3.6, hydrogen bonds and hydrophobic interactions bind the individual pectin chains together. These bonds form as water is bound by sugar and forces pectin strands to stick together. These form a three-dimensional molecular net that creates the macromolecular gel. The gelling-mechanism is called a low-water-activity gel or sugar-acid-pectin gel.[citation needed]
While low-methoxy pectins need calcium to form a gel, they can do so at lower soluble solids and higher pH than high-methoxy pectins. Normally low-methoxy pectins form gels with a range of pH from 2.6 to 7.0 and with a soluble solids content between 10 and 70%.[citation needed]
The non-esterified galacturonic acid units can be either free acids (carboxyl groups) or salts with sodium, potassium, or calcium. The salts of partially esterified pectins are called pectinates, if the degree of esterification is below 5 percent the salts are called pectates, the insoluble acid form, pectic acid.[citation needed]
Some plants, such as sugar beet, potatoes and pears, contain pectins with acetylated galacturonic acid in addition to methyl esters. Acetylation prevents gel-formation but increases the stabilising and emulsifying effects of pectin.[citation needed]
Amidated pectin is a modified form of pectin. Here, some of the galacturonic acid is converted with ammonia to carboxylic acidamide. These pectins are more tolerant of varying calcium concentrations that occur in use.[26]
Thiolated pectin exhibits substantially improved gelling properties since this thiomer is able to crosslink via disulfide bond formation. These high gelling properties are advantageous for various pharmaceutical applications and applications in food industry.[27][28][29]
To prepare a pectin-gel, the ingredients are heated, dissolving the pectin. Upon cooling below gelling temperature, a gel starts to form. If gel formation is too strong, syneresis or a granular texture are the result, while weak gelling leads to excessively soft gels.[citation needed]
Amidated pectins behave like low-ester pectins but need less calcium and are more tolerant of excess calcium. Also, gels from amidated pectin are thermoreversible; they can be heated and after cooling solidify again, whereas conventional pectin-gels will afterwards remain liquid.[citation needed]
High-ester pectins set at higher temperatures than low-ester pectins. However, gelling reactions with calcium increase as the degree of esterification falls. Similarly, lower pH-values or higher soluble solids (normally sugars) increase gelling speeds. Suitable pectins can therefore be selected for jams and jellies, or for higher-sugar confectionery jellies.[citation needed]
Sources and production
Pears, apples, guavas, quince, plums, gooseberries, and oranges and other citrus fruits contain large amounts of pectin, while soft fruits, like cherries, grapes, and strawberries, contain small amounts of pectin.[citation needed]
Typical levels of pectin in fresh fruits and vegetables are:
The main raw materials for pectin production are dried citrus peels or apple pomace, both by-products of juice production. Pomace from sugar beets is also used to a small extent.[citation needed]
From these materials, pectin is extracted by adding hot dilute acid at pH values from 1.5 to 3.5. During several hours of extraction, the protopectin loses some of its branching and chain length and goes into solution. After filtering, the extract is concentrated in a vacuum and the pectin is then precipitated by adding ethanol or isopropanol. An old technique of precipitating pectin with aluminium salts is no longer used (apart from alcohols and polyvalent cations, pectin also precipitates with proteins and detergents).[citation needed]
Alcohol-precipitated pectin is then separated, washed, and dried. Treating the initial pectin with dilute acid leads to low-esterified pectins. When this process includes ammonium hydroxide (NH3(aq)), amidated pectins are obtained. After drying and milling, pectin is usually standardised[clarification needed] with sugar, and sometimes calcium salts or organic acids, to optimise performance in a particular application.[31]
Uses
The main use for pectin is as a gelling agent, thickening agent and stabiliser in food.[32]
In some countries, pectin is also available as a solution or an extract, or as a blended powder, for home jam making.[citation needed]
The classical application is giving the jelly-like consistency to jams or marmalades, which would otherwise be sweet juices.[33] Pectin also reduces syneresis in jams and marmalades and increases the gel strength of low-calorie jams. For household use, pectin is an ingredient in gelling sugar (also known as "jam sugar") where it is diluted to the right concentration with sugar and some citric acid to adjust pH.[citation needed]
For various food applications, different kinds of pectins can be distinguished by their properties, such as acidity, degree of esterification, relative number of methoxyl groups in the molecules, etc. For instance, the term "high methoxyl" refers to pectins that have a large proportion of the carboxyl groups in the pectin molecule that are esterified with methanol, compared to low methoxyl pectins:[33][34][35]
high methoxyl pectins are defined as those with a degree of esterification equal to or above 50, are typically used in traditional jam and jelly making;[36][37][32] such pectins require high sugar concentrations and acidic conditions to form gels, and provide a smooth texture and suitable to be used in bakery fillings and confectionery applications;[32][35][38]
low methoxyl pectins have a degree of esterification of less than 50,[35][32] can be either amidated or non-amidated: the percentage level of substitution of the amide group, defined as the degree of amidation, defines the efficacy of a pectin;[32] low methoxyl pectins can provide a range of textures and rheological properties, depending on the calcium concentration and the calcium reactivity of the pectin chosen[39]—amidated low methoxyl pectins are generally thermoreversible, meaning they can form gels that can melt and reform, whereas non-amidated low methoxyl pectins can form thermostable gels that withstand high temperatures;[39] these properties make low methoxyl pectins suitable for low sugar and sugar-free applications, dairy products, and stabilizing acidic protein drinks.[36][34][32]
For conventional jams and marmalades that contain above 60% sugar and soluble fruit solids, high-ester (high methoxyl) pectins are used. With low-ester (low methoxyl) pectins and amidated pectins, less sugar is needed, so that diet products can be made. Water extract of aiyu seeds is traditionally used in Taiwan to make aiyu jelly, where the extract gels without heating due to low-ester pectins from the seeds and the bivalent cations from the water.[23]
Pectin is used in confectionery jellies to give a good gel structure, a clean bite and to confer a good flavour release. Pectin can also be used to stabilise acidic protein drinks, such as drinking yogurt, to improve the mouth-feel and the pulp stability in juice based drinks and as a fat substitute in baked goods.[36][40]
Typical levels of pectin used as a food additive are between 0.5 and 1.0% – this is about the same amount of pectin as in fresh fruit.[41]
In medicine, pectin increases viscosity and volume of stool so that it is used against constipation and diarrhea. Until 2002, it was one of the main ingredients used in Kaopectate – a medication to combat diarrhea – along with kaolinite. It has been used in gentle heavy metal removal from biological systems.[42] Pectin is also used in throat lozenges as a demulcent.[citation needed]
In cosmetic products, pectin acts as a stabiliser. Pectin is also used in wound healing preparations and speciality medical adhesives, such as colostomy devices.[citation needed]
Sriamornsak[43] revealed that pectin could be used in various oral drug delivery platforms, e.g., controlled release systems, gastro-retentive systems, colon-specific delivery systems and mucoadhesive delivery systems, according to its intoxicity and low cost. It was found that pectin from different sources provides different gelling abilities, due to variations in molecular size and chemical composition. Like other natural polymers, a major problem with pectin is inconsistency in reproducibility between samples, which may result in poor reproducibility in drug delivery characteristics.[citation needed]
In ruminant nutrition, depending on the extent of lignification of the cell wall, pectin is up to 90% digestible by bacterial enzymes. Ruminant nutritionists recommend that the digestibility and energy concentration in forages be improved by increasing pectin concentration in the forage.[citation needed]
In cigars, pectin is considered an excellent substitute for vegetable glue and many cigar smokers and collectors use pectin for repairing damaged tobacco leaves on their cigars.[citation needed]
Yablokov et al., writing in Chernobyl: Consequences of the Catastrophe for People and the Environment, quote research conducted by the Ukrainian Center of Radiation Medicine and the Belarusian Institute of Radiation Medicine and Endocrinology, concluded, regarding pectin's radioprotective effects, that "adding pectin preparations to the food of inhabitants of the Chernobyl-contaminated regions promotes an effective excretion of incorporated radionuclides" such as cesium-137. The authors reported on the positive results of using pectin food additive preparations in a number of clinical studies conducted on children in severely polluted areas, with up to 50% improvement over control groups.[44]
During the Second World War, Allied pilots were provided with maps printed on silk, for navigation in escape and evasion efforts. The printing process at first proved nearly impossible because the several layers of ink immediately ran, blurring outlines and rendering place names illegible until the inventor of the maps, Clayton Hutton, mixed a little pectin with the ink and at once the pectin coagulated the ink and prevented it from running, allowing small topographic features to be clearly visible.[45]
The European Union (EU) has not set a daily intake limit for two types of pectin, known as E440(i) and Amidated Pectin E440(ii). The EU has established purity standards for these additives in the EU Commission Regulation (EU)/231/2012. Pectin can be used as needed in most food categories, a concept referred to as "quantum satis".[47] The European Food Safety Authority (EFSA) conducted a re-evaluation of Pectin E440(i) and Amidated Pectin E440(ii) in 2017. The EFSA concluded that the use of these food additives poses no safety concern for the general population. Furthermore, the agency stated that it is not necessary to establish a numerical value for the Acceptable Daily Intake (ADI).[48][49]
In the International Numbering System (INS), pectin has the number 440. In Europe, pectins are differentiated into the E numbers E440(i) for non-amidated pectins and E440(ii) for amidated pectins. There are specifications in all national and international legislation defining its quality and regulating its use.[citation needed]
History
Pectin was first isolated and described in 1825 by Henri Braconnot, though the action of pectin to make jams and marmalades was known long before. To obtain well-set jams from fruits that had little or only poor quality pectin, pectin-rich fruits or their extracts were mixed into the recipe.[citation needed]
During the Industrial Revolution, the makers of fruit preserves turned to producers of apple juice to obtain dried apple pomace that was cooked to extract pectin. Later, in the 1920s and 1930s, factories were built that commercially extracted pectin from dried apple pomace, and later citrus peel, in regions that produced apple juice in both the US and Europe.[citation needed]
Pectin was first sold as a liquid extract, but is now most often used as dried powder, which is easier than a liquid to store and handle.[50]
^Braconnot H (1825). "Recherches sur un nouvel acide universellement répandu dans tous les vegetaux" [Investigations into a new acid spread throughout all plants]. Annales de chimie et de physique. 28 (2): 173–178. Archived from the original on 7 September 2024. Retrieved 8 January 2016. From page 178: ... je propose le nom pectique, de πηχτες, coagulum, ... (I propose the name pectique, from πηχτες [pectes], coagulum [coagulated material, clot, curd])
^Gerlat P (15 November 2000). "Beverage Stabilizers". Food Product Design Magazine. Archived from the original on 12 August 2022. Retrieved 24 January 2023 – via Food Ingredients Online - for the food ingredients industry.
^Bidhendi AJ, Chebli Y, Geitmann A (June 2020). "Fluorescence visualization of cellulose and pectin in the primary plant cell wall". Journal of Microscopy. 278 (3): 164–181. doi:10.1111/jmi.12895. PMID32270489. S2CID215619998.
^Grierson D, Maunders MJ, Slater A, Ray J, Bird CR, Schuch W, et al. (1986). "Gene expression during tomato ripening". Philosophical Transactions of the Royal Society of London B. 314 (1166): 399–410. Bibcode:1986RSPTB.314..399G. doi:10.1098/rstb.1986.0061.
^Lindinger W, Taucher J, Jordan A, Hansel A, Vogel W (August 1997). "Endogenous production of methanol after the consumption of fruit". Alcoholism: Clinical and Experimental Research. 21 (5): 939–943. doi:10.1111/j.1530-0277.1997.tb03862.x. PMID9267548.
^Huang Z, Gutterman Y, Osborne DJ (30 July 2004). "Value of the mucilaginous pellicle to seeds of the sand-stabilizing desert woody shrub Artemisia sphaerocephala (Asteraceae)". Trees. 18 (6): 669–676. Bibcode:2004Trees..18..669H. doi:10.1007/s00468-004-0349-4. S2CID37031814.
^Gómez B, Gullón B, Remoroza C, Schols HA, Parajó JC, Alonso JL (October 2014). "Purification, characterization, and prebiotic properties of pectic oligosaccharides from orange peel wastes". Journal of Agricultural and Food Chemistry. 62 (40): 9769–9782. doi:10.1021/jf503475b. PMID25207862.
^ abc"Galacturonans". Complex Carbohydrate Research Centre, University of Georgia, US. Archived from the original on 15 August 2010. Retrieved 23 July 2010.
^ Singaram A, Guruchandran S, Ganesan N (2024). "Review on functionalized pectin films for active food packaging". Packaging Technology and Science. 37 (4): 237–262. doi:10.1002/pts.2793.
^Wang X, Chen Q, Lü X (2014). "Pectin extracted from apple pomace and citrus peel by subcritical water". Food Hydrocoll. 38: 129–137. doi:10.1016/J.FOODHYD.2013.12.003.
^Arachchige M, Mu T, Ma M (2020). "Structural, physicochemical and emulsifying properties of sweet potato pectin treated by high hydrostatic pressure and/or pectinase: a comparative study". J Sci Food Agric. 100 (13): 4911–4920. doi:10.1007/s11696-018-0500-0. PMID32483850.
^ abcLiang RH, Chen J, Liu W, Liu CM, Yu W, Yuan M, et al. (January 2012). "Extraction, characterization and spontaneous gel-forming property of pectin from creeping fig (Ficus pumila Linn.) seeds". Carbohydrate Polymers. 87 (1): 76–83. doi:10.1016/j.carbpol.2011.07.013. PMID34663033.
^Durand D, Bertrand C, Clark AH, Lips A (February 1990). "Calcium-induced gelation of low methoxy pectin solutions--thermodynamic and rheological considerations". International Journal of Biological Macromolecules. 12 (1): 14–18. doi:10.1016/0141-8130(90)90076-M. PMID2083236.
^Migliori M, Gabriele D, Checchetti A, Battipede B (2010). "Compatibility analysis of pectin at different esterification degree from intrinsic viscosity data of diluted ternary solutions". Reactive and Functional Polymers. 70 (10): 863–867. Bibcode:2010RFPol..70..863M. doi:10.1016/j.reactfunctpolym.2010.07.011.
^Chen J, Cui Y, Zhang S, Ma Y, Yang F (March 2023). "Compound treatment of thiolated citrus high-methoxyl pectin and sodium phosphate dibasic anhydrous improved gluten network structure". Food Chemistry. 404 (Pt B): 134770. doi:10.1016/j.foodchem.2022.134770. PMID36332584. S2CID253214393.
^Wichtl M (January 2004). "Monograph: Rosae Pseudofrutus (Rose Hips)". Herbal Drugs and Phytopharmaceuticals: a handbook for practice on a scientific basis (3rd expanded and completely rev. ed.). Stuttgart : Boca Raton, FL: Medpharm; CRC Press. p. 520. ISBN978-0-8493-1961-7. Archived from the original on 12 October 2023. Retrieved 14 March 2023.
^G. Eisenbrand, P. Schreier; RÖMPP Lexikon Lebensmittelchemie; Thieme, Stuttgart; Mai 2006
^ abSurolia R, Singh A (2024). "Pectin—Structure, Specification, Production, Applications and various Emerging Sources: A Review". Sustainable Food Systems (Volume II). World Sustainability Series. pp. 267–282. doi:10.1007/978-3-031-46046-3_13. ISBN978-3-031-46045-6.
^ abc"UniPECTINE"(PDF). Archived(PDF) from the original on 7 April 2024. Retrieved 7 April 2024.
^Yang Y, Anderson CT (2 October 2020). "Biosynthesis, Localisation, and Function of Pectins in Plants". Pectin: Technological and Physiological Properties. pp. 1–15. doi:10.1007/978-3-030-53421-9_1. ISBN978-3-030-53421-9.
^May CD (1990). "Industrial pectins: Sources, production and applications". Carbohydrate Polymers. 12 (1): 79–99. doi:10.1016/0144-8617(90)90105-2.
^Thakur BR, Singh RK, Handa AK (February 1997). "Chemistry and uses of pectin--a review". Critical Reviews in Food Science and Nutrition. 37 (1): 47–73. doi:10.1080/10408399709527767. PMID9067088.
^Zhao ZY, Liang L, Fan X, Yu Z, Hotchkiss AT, Wilk BJ, et al. (2008). "The role of modified citrus pectin as an effective chelator of lead in children hospitalized with toxic lead levels". Alternative Therapies in Health and Medicine. 14 (4): 34–38. PMID18616067.
^Joint FAO/WHO Expert Committee on Food Additives. Chemical Risks in Food. Who.int. (Report). Archived from the original on 8 July 2004. Retrieved 16 July 2012.
FOD yang terjadi pada mesin turboshaft Honeywell LTS101 pada heli Bell 222 yang diakibatkan oleh sekrup kecil menerobos masuk melewati tabir inlet. Foreign Object Debris (FOD) adalah substansi, debris atau artikel yang asing terhadap kendaraan atau sistem yang memiliki potensi mengakibatkan kerusakan. Foreign Object Damage (juga disingkat sebagai FOD) adalah kerusakan yang diatribusikan ke benda asing (contohnya ialah semua benda yang bukan merupakan bagian dari kendaraan) yang bisa diekspres...
Amy RoseTokoh Sonic the HedgehogPenampilanperdanaSonic the Hedgehog CD (1993)PermainanperdanaSonic the Hedgehog CD (1993)PenciptaKenji Terada (manga)Kazuyuki Hoshino (permainan video)DidesainolehKenji Terada (manga)Kazuyuki Hoshino (1993-1997)Yuji Uekawa (sejak 1998)InformasiSpesiesLandakJenis kelaminPerempuan Amy Rose, nama panjangnya adalah Amy Rose the Hedgehog dan pernah disebut sebagai Rosy the Rascal, adalah tokoh permainan video dari serial Sonic the Hedgehog milik Sega. Dia adalah Mob...
Matthew Briggs Informasi pribadiNama lengkap Matthew Anthony BriggsTanggal lahir 9 Maret 1991 (umur 33)Tempat lahir Wandsworth, London, InggrisTinggi 1,88 m (6 ft 2 in)[1]Posisi bermain BekInformasi klubKlub saat ini Colchester United(pinjaman dari Millwall)Nomor 15Karier junior1999–2006 FulhamKarier senior*Tahun Tim Tampil (Gol)2006–2014 Fulham 13 (0)2010 → Leyton Orient (pinjaman) 1 (0)2012 → Peterborough United (pinjaman) 5 (0)2012 → Bristol City (pin...
Charles Edward Stuart Charles Edward Louis John Casimir Silvester Maria Stuart (31 Desember 1720-31 Januari 1788) merupakan seorang pembuangan penuntut singgasana ke Inggris, Skotlandia, dan Irlandia, dan biasanya dipanggil Bonnie Prince Charlie. Charles merupakan putera dari James Francis Edward Stuart, dia dipecat saat Revolusi 1868. Dia meninggal dunia di Roma pada tahun 1788 Bibiliografi Frank J. MacLynn: Charles Edward Stuart: a tragedy in many acts, London [u.a.]: Routledge, 1988 Susan ...
Air warfare branch of Honduras' military Honduran Air ForceFuerza Aérea HondureñaHonduran Air Force patchFounded14 April 1931; 92 years ago (1931-04-14)Country HondurasTypeAir forceRoleAerial warfareSize16,500 personnel 86 aircraftPart ofArmed Forces of HondurasMotto(s)FAHAnniversaries14 AprilEngagements Football War Central American Crisis CommandersComandante GeneralGeneral de Brigada Javier Barrientos AlvaradoInsigniaRoundelFin flashMilitary unit The Honduras ...
UTC+06:30Zona waktuPeta dunia dengan zona waktu berwarnaPerbedaan UTCUTCUTC+06:30Waktu kini03:54, 15 April 2024 UTC+06:30 [refresh]Meridian utama97,5 derajat TKelompok tanggal-waktuF* UTC+06:30: Biru (Desember), Jingga (Juni), Kuning (sepanjang tahun), Biru Muda - Daerah laut UTC+06:30 merupakan perbedaan waktu dari UTC dari +06:30. Waktu ini digunakan di: Sebagai waktu standar (sepanjang tahun) Asia Tenggara Myanmar - Waktu Standar Myanmar Samudra Hindia Kepulauan Cocos (Australia - Waktu di...
Branch of primatesNot to be confused with Hominidae.This article is about the branch of primates. For other uses, see Ape (disambiguation). HominoidsApesTemporal range: Miocene-Holocene Sumatran orangutan (Pongo abelli) Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Primates Suborder: Haplorhini Infraorder: Simiiformes Parvorder: Catarrhini Superfamily: HominoideaGray, 1825[1] Type species Homo sapiensLinnaeus, 1758 Families †Pr...
Lya MaraLya Mara, circa 1927LahirAleksandra Gudowicz(1897-08-01)1 Agustus 1897Riga, Governorate of Livonia, Russian EmpireMeninggal1 Maret 1960(1960-03-01) (umur 62)Canton of Ticino, SwissNama lainMia MaraTahun aktif1916–1931Suami/istriFrederic Zelnik (m. 1918; meninggal 1950) Lya Mara (born Aleksandra Gudowicz; 1 Agustus 1897 – 1 Maret 1960) merupakan seorang aktris berkabangsaan Polandia. Dia adalah salah ...
European consumer products manufacturing company 53°52′26.9″N 2°22′57.4″W / 53.874139°N 2.382611°W / 53.874139; -2.382611 The Paper Cup Company aka Printed Cup CompanyCompany typeLimited CompanyIndustryPackagingFounded2006HeadquartersClitheroe, United KingdomKey peopleMark WoodwardProductsPaper cups, PET containers, ice cream pots, popcorn buckets, straws, sleeves, lidsWebsite/ www.papercupcompany.com The Paper Company is a European consumer products manufa...
AngeloAutoreRaffaello Sanzio Data1500-1501 TecnicaOlio su tavola trasportato su tela Dimensioni31×27 cm UbicazionePinacoteca Tosio Martinengo, Brescia Angelo è un dipinto a olio su tavola trasportato su tela (31x27 cm) di Raffaello, databile al 1500-1501 e conservato nella Pinacoteca Tosio Martinengo a Brescia. Si tratta di uno dei frammenti della Pala Baronci. Indice 1 Storia 2 Descrizione e stile 3 Bibliografia 4 Voci correlate 5 Collegamenti esterni Storia La pala eseguita per la ca...
American amusement ride designer Tony BaxterBaxter in 2009Born (1947-02-01) February 1, 1947 (age 77)Los Angeles, California, U.S.NationalityAmericanEducationSanta Ana High School, California State University, Long BeachOccupation(s)Senior Vice President, Creative Development, Walt Disney Imagineering, formerly known as WED EnterprisesYears active1965–2016, 2020 (Tiana's Bayou Adventure)Board member ofWalt Disney ImagineeringAwardsTHEA Award, Lifetime Achievement Disney Legen...
1959 single by Patsy ClineGotta Lot of Rhythm in My SoulSingle by Patsy ClineB-sideI'm Blue AgainReleasedJuly 20, 1959 (1959-07-20)RecordedJanuary 9, 1959StudioBradley Studios, Nashville, TennesseeGenreCountryRockabilly[1]LabelDeccaSongwriter(s)W.S. StevensonBarbara VaughanProducer(s)Owen BradleyPatsy Cline singles chronology Cry Not for Me (1959) Gotta Lot of Rhythm in My Soul (1959) Lovesick Blues (1960) Gotta Lot of Rhythm in My Soul is a song first recorded by Ameri...
2024 Paris Olympic event Shootingat the Games of the XXXIII OlympiadVenueNational Shooting Center, ChâteaurouxDates27 July – 5 August 2024No. of events15Competitors340 (170 men and 170 women)← 20202028 → Shooting at the2024 Summer OlympicsQualificationRifle50 m rifle three positionsmenwomen10 m air riflemenwomenmixedPistol25 m pistolwomen25 m rapid fire pistolmen10 m air pistolmenwomenmixedShotgunTrapmenwomenSkeetmenwomenmixedvte Shooting competitions at the 2024 Summ...
Economic service provided by the finance industry For the Hong Kong constituency, see Financial Services (constituency). Part of a series onFinance Markets Assets Asset (economics) Bond Asset growth Capital asset Commodity Derivatives Domains Equity Foreign exchange Money Over-the-counter Private equity Real estate Spot Stock Participants Angel investor Bull (stock market speculator) Financial planner Investor institutional Retail Speculator Locations Financial centres Offshore financial cent...
1st-century Jewish itinerant preacher Not to be confused with John the Apostle. Saint John the Baptist redirects here. For other uses, see Saint John the Baptist (disambiguation). SaintJohn the BaptistSaint John the Baptist, a 1540 painting by TitianBornc. 1st century BC[1]Herodian Tetrarchy, Roman EmpireDiedc. AD 30[2][3][4][5][6]Machaerus, Herodian Tetrarchy, Roman EmpireVenerated inChristianity (all denominations which venera...
Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: Muhammad bin Jarir ath-Thabari – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Muhammad ibnu Jari...
Nonprofit blood bank in New York City New York Blood Center310 East 67th Street headquartersFounded1964 (1964)TypeBlood bankTax ID no. 131949477LocationNew York City, New York, United StatesCoordinates40°45′54″N 73°57′36″W / 40.7650502°N 73.9600540°W / 40.7650502; -73.9600540Websitewww.nybloodcenter.org The New York Blood Center (NYBC) is a community, nonprofit blood bank based in New York City.[1] Established in 1964 by Dr. Aaron Kellner,[...
1844 Christian philosophical work by Søren Kierkegaard For another work originally called Philosophical Fragments, see Dialectic of Enlightenment. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic. Please help im...