Lebesgue–Stieltjes integration

In measure-theoretic analysis and related branches of mathematics, Lebesgue–Stieltjes integration generalizes both Riemann–Stieltjes and Lebesgue integration, preserving the many advantages of the former in a more general measure-theoretic framework. The Lebesgue–Stieltjes integral is the ordinary Lebesgue integral with respect to a measure known as the Lebesgue–Stieltjes measure, which may be associated to any function of bounded variation on the real line. The Lebesgue–Stieltjes measure is a regular Borel measure, and conversely every regular Borel measure on the real line is of this kind.

Lebesgue–Stieltjes integrals, named for Henri Leon Lebesgue and Thomas Joannes Stieltjes, are also known as Lebesgue–Radon integrals or just Radon integrals, after Johann Radon, to whom much of the theory is due. They find common application in probability and stochastic processes, and in certain branches of analysis including potential theory.

Definition

The Lebesgue–Stieltjes integral

is defined when    is Borel-measurable and bounded and    is of bounded variation in [a, b] and right-continuous, or when f is non-negative and g is monotone and right-continuous. To start, assume that f is non-negative and g is monotone non-decreasing and right-continuous. Define w((s, t]) = g(t) − g(s) and w({a}) = 0 (Alternatively, the construction works for g left-continuous, w([s,t)) = g(t) − g(s) and w({b}) = 0).

By Carathéodory's extension theorem, there is a unique Borel measure μg on [a, b] which agrees with w on every interval I. The measure μg arises from an outer measure (in fact, a metric outer measure) given by

the infimum taken over all coverings of E by countably many semiopen intervals. This measure is sometimes called[1] the Lebesgue–Stieltjes measure associated with g.

The Lebesgue–Stieltjes integral

is defined as the Lebesgue integral of f with respect to the measure μg in the usual way. If g is non-increasing, then define

the latter integral being defined by the preceding construction.

If g is of bounded variation, then it is possible to write

where g1(x) = V x
a
g
is the total variation of g in the interval [a, x], and g2(x) = g1(x) − g(x). Both g1 and g2 are monotone non-decreasing.

Now, if f is bounded, the Lebesgue–Stieltjes integral of f with respect to g is defined by

where the latter two integrals are well-defined by the preceding construction.

Daniell integral

An alternative approach (Hewitt & Stromberg 1965) is to define the Lebesgue–Stieltjes integral as the Daniell integral that extends the usual Riemann–Stieltjes integral. Let g be a non-decreasing right-continuous function on [a, b], and define I( f ) to be the Riemann–Stieltjes integral

for all continuous functions f. The functional I defines a Radon measure on [a, b]. This functional can then be extended to the class of all non-negative functions by setting

For Borel measurable functions, one has

and either side of the identity then defines the Lebesgue–Stieltjes integral of h. The outer measure μg is defined via

where χA is the indicator function of A.

Integrators of bounded variation are handled as above by decomposing into positive and negative variations.

Example

Suppose that γ : [a, b] → R2 is a rectifiable curve in the plane and ρ : R2 → [0, ∞) is Borel measurable. Then we may define the length of γ with respect to the Euclidean metric weighted by ρ to be

where is the length of the restriction of γ to [a, t]. This is sometimes called the ρ-length of γ. This notion is quite useful for various applications: for example, in muddy terrain the speed in which a person can move may depend on how deep the mud is. If ρ(z) denotes the inverse of the walking speed at or near z, then the ρ-length of γ is the time it would take to traverse γ. The concept of extremal length uses this notion of the ρ-length of curves and is useful in the study of conformal mappings.

Integration by parts

A function f is said to be "regular" at a point a if the right and left hand limits f (a+) and f (a−) exist, and the function takes at a the average value

Given two functions U and V of finite variation, if at each point either at least one of U or V is continuous or U and V are both regular, then an integration by parts formula for the Lebesgue–Stieltjes integral holds:[2]

Here the relevant Lebesgue–Stieltjes measures are associated with the right-continuous versions of the functions U and V; that is, to and similarly The bounded interval (a, b) may be replaced with an unbounded interval (-∞, b), (a, ∞) or (-∞, ∞) provided that U and V are of finite variation on this unbounded interval. Complex-valued functions may be used as well.

An alternative result, of significant importance in the theory of stochastic calculus is the following. Given two functions U and V of finite variation, which are both right-continuous and have left-limits (they are càdlàg functions) then

where ΔUt = U(t) − U(t−). This result can be seen as a precursor to Itô's lemma, and is of use in the general theory of stochastic integration. The final term is ΔU(tV(t) = d[U, V],which arises from the quadratic covariation of U and V. (The earlier result can then be seen as a result pertaining to the Stratonovich integral.)

Lebesgue integration

When g(x) = x for all real x, then μg is the Lebesgue measure, and the Lebesgue–Stieltjes integral of f with respect to g is equivalent to the Lebesgue integral of f.

Riemann–Stieltjes integration and probability theory

Where f is a continuous real-valued function of a real variable and v is a non-decreasing real function, the Lebesgue–Stieltjes integral is equivalent to the Riemann–Stieltjes integral, in which case we often write

for the Lebesgue–Stieltjes integral, letting the measure μv remain implicit. This is particularly common in probability theory when v is the cumulative distribution function of a real-valued random variable X, in which case

(See the article on Riemann–Stieltjes integration for more detail on dealing with such cases.)

Notes

  1. ^ Halmos (1974), Sec. 15
  2. ^ Hewitt, Edwin (May 1960). "Integration by Parts for Stieltjes Integrals". The American Mathematical Monthly. 67 (5): 419–423. doi:10.2307/2309287. JSTOR 2309287.

Also see

Henstock-Kurzweil-Stiltjes Integral

References

Read other articles:

Midara na Ao-chan wa Benkyō ga DekinaiGambar sampul manga Midara na Ao-chan wa Benkyō ga Dekinai! volume pertama, yang diterbitkan oleh Kodansha淫らな青ちゃんは勉強ができない(Midara na Ao-chan wa Benkyō ga Dekinai)GenreKomedi[1] MangaPengarangRen KawaharaPenerbitKodanshaPenerbit bahasa InggrisNA Kodansha USAMajalahShōnen Magazine EdgeDemografiShōnenTerbitOktober 2015 – Desember 2018Volume8 (Daftar volume) MangaPengarangRen KawaharaPenerbitKodanshaMajalahShōnen M...

 

Bagian dari seri tentangBuddhisme SejarahPenyebaran Sejarah Garis waktu Sidang Buddhis Jalur Sutra Benua Asia Tenggara Asia Timur Asia Tengah Timur Tengah Dunia Barat Australia Oseania Amerika Eropa Afrika Populasi signifikan Tiongkok Thailand Jepang Myanmar Sri Lanka Vietnam Kamboja Korea Taiwan India Malaysia Laos Indonesia Amerika Serikat Singapura AliranTradisi Buddhisme prasektarian Aliran Buddhis awal Mahāsāṃghika Sthaviravāda Aliran kontemporer Theravāda Mahāyāna Vajrayāna Kon...

 

Ular segitiga-merah Xenochrophis trianguligerus Status konservasiRisiko rendahIUCN192034 TaksonomiKerajaanAnimaliaFilumChordataKelasReptiliaOrdoSquamataFamiliColubridaeGenusXenochrophisSpesiesXenochrophis trianguligerus F. Boie, 1827 lbs Ular segitiga-merah adalah spesies Natricinae yang terdapat di India hingga kepulauan Nusantara. Dinamakan ular segitiga-merah karena ular ini memiliki motif-motif berbentuk segitiga berwarna merah di sisi badannya. Nama umumnya dalam bahasa Inggris adalah Tr...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

2018 video gameThe King of Fighters All StarPromotional cover of The King of Fighters All StarDeveloper(s)Netmarble NeoPublisher(s)NetmarblePlatform(s)Android, iOS, Microsoft WindowsReleaseMobileJP: July 26, 2018KR: May 9, 2019WW: October 22, 2019Microsoft WindowsWW: February 10, 2022Genre(s)Beat 'em up, action role-playingMode(s)Single-player The King of Fighters All Star (KOFAS) is a beat 'em up action role-playing game developed by Netmarble Neo and published by Netmarble. It was first rel...

 

Pour les articles homonymes, voir Schilling. Pavel SchillingPortrait de Pavel Schilling par Karl Brioullov (1828).BiographieNaissance 5 avril 1786TallinnDécès 25 juillet 1837 (à 51 ans)Saint-PétersbourgSépulture Cimetière luthérien de Saint-PétersbourgNoms de naissance Paul Ludwig Schilling von Cannstatt, Павел Львович ШиллингNationalité russeFormation Premier corps des cadetsActivités Ingénieur, inventeur, diplomate, historienPère Ludwig von Schilling (d)...

American baseball pitcher (born 1990) Baseball player Sam GaviglioGaviglio with the Springfield Cardinals in 2014Free agent PitcherBorn: (1990-05-22) May 22, 1990 (age 33)Ashland, Oregon, U.S.Bats: RightThrows: RightProfessional debutMLB: May 11, 2017, for the Seattle MarinersKBO: July 2, 2021, for the SSG LandersMLB statistics (through 2020 season)Win–loss record11–18Earned run average4.91Strikeouts243KBO statistics (through 2021 season)Win–loss recor...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (April 2020) (Learn how and when to remove this template message) The topic of this article may not meet Wikiped...

 

Syafruddin KamboPotret resmi, 2018 Menteri Pendayagunaan Aparatur Negara dan Reformasi Birokrasi Indonesia ke-18Masa jabatan15 Agustus 2018 – 20 Oktober 2019PresidenJoko Widodo PendahuluAsman AbnurPenggantiTjahjo KumoloWakil Kepala Kepolisian Negara Republik IndonesiaMasa jabatan10 September 2016 – 15 Agustus 2018PresidenJoko WidodoKapolriTito Karnavian (2016–2019) PendahuluBudi GunawanPenggantiAri Dono Sukmanto Informasi pribadiLahir12 April 1961 (umur 63)Maj...

Pongtiwat Tangwancharoen Pongtiwat Tangwancharoen atau Blue (lahir 15 Maret 2000) adalah seorang pemeran asal Thailand. Pada 2015, ia menjadi model di MV Yaak Pen Khon Rak Khong Theu milik Pae & B feat. Chocolate-T. Pada 2016, ia debut akting dalam drama Rahut Prissana. Pada 2019, ia menjadi pemeran pendukung dalam drama Krong Karm, Wai Sab Saraek Kad 2, dan Reminders serta tampil dalam film Love and Run dan memerankan peran utama dalam film Happy New Year Happy New You. Ia menempuh pendi...

 

This is a list of municipalities (urban or rural communes), and arrondissements of Morocco, based on the 2004 census. In 2009 a new administrative division of Morocco was adopted, creating 13 new provinces: Berrechid, Driouch, Fquih Ben Salah, Guercif, Midelt, Ouezzane, Rehamna, Sidi Bennour, Sidi Ifni, Sidi Slimane, Tarfaya, Tinghir and Youssoufia. Many municipalities and communes below are now part of these new provinces. The list below is not yet updated for this change.[1] All of...

 

Saatnya Kita SahurGenre Sketsa komedi Kuis Interaktif Game Show PengembangTrans TVPemeran Ramzi (2007) Okky Lukman (2007) Komeng (2007—2010) Adul (2007—2011) Olga Syahputra (2008—2011) Nycta Gina (2008—2010) Kiwil (2008—2011) Desy Ratnasari (2008—2009) Tessy (2008) Bedu (2009) Asri Welas (2009) Denny Cagur (2011) Wendi Cagur (2011) Narji (2011) Soimah (2011) Negara asalIndonesiaBahasa asliIndonesiaJmlh. musim5Jmlh. episode87 (daftar episode)ProduksiLokasi produksiJakartaDurasi2�...

Public university in Yerevan, Armenia National Polytechnic University of ArmeniaFormer nameYerevan Karl Marx Polytechnic Institute, Yerevan Polytechnic Institute, State Engineering University of ArmeniaTypePublicEstablished1933RectorGor VardanyanAcademic staff17Studentsabout 10,000[1]LocationYerevan, Armenia40°11′27.99″N 44°31′23.19″E / 40.1911083°N 44.5231083°E / 40.1911083; 44.5231083CampusYerevan, Gyumri, Vanadzor, KapanColors    Blue, ...

 

German jurist and social theorist Justus Möser Justus Möser (14 December 1720 – 8 January 1794) was a German jurist and social theorist, best known for his innovative history of Osnabrück which stressed social and cultural themes. Biography This article is part of a series onConservatism in Germany Ideologies Agrarian Christian democracy Liberal Ordo Ritter School Monarchism Nationalist Neue Rechte Völkisch Paternalistic State Socialism Prussianism Cameralistic Socialist Revolutiona...

 

Куштдепди на параде Независимости, Ашхабад Куштдепди на параде Независимости, Ашхабад Куштдепди на ахалтекинских лошадях Куштдепди (туркм. Küşt depdi[1]) — старинный, быстрый туркменский танец, а также музыка к нему. Куштдепди сохранился как ритуально-развлекательна�...

Sydney WaterSydney Water logoInformasi lembagaDibentuk26 Maret 1888Wilayah hukumPemerintah New South WalesKantor pusat1 Smith Street Parramatta, New South Wales, AustraliaMenteriPhillip Costa, Menteri AirPejabat eksekutifKerry Schott, Direktur ManajerTom Parry, Ketua DewanSitus webwww.sydneywater.com.au Sydney Water adalah sebuah perusahan pemerintah New South Wales yang menyediakan layanan air minum, air buangan dan beberapa air badai ke Sydney, Illawarra dan Blue Mountains, di Australia. Sy...

 

Russian composer Not to be confused with the politician and scientist Ivan Vyshnegradsky. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (August 2011) This article includes a list of general references, but it lacks sufficient corresponding inline citat...

 

American college football season 2003 Toledo Rockets footballConferenceMid-American ConferenceDivisionWest DivisionRecord8–4 (6–2 MAC)Head coachTom Amstutz (3rd season)Offensive coordinatorRob Spence (3rd season)Defensive coordinatorLou West (3rd season)Home stadiumGlass BowlSeasons← 20022004 → 2003 Mid-American Conference football standings vte Conf Overall Team   W   L     W   L   East Division No. 10 Miami ...

You can help expand this article with text translated from the corresponding article in Chinese. (March 2023) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text that appears unreliable or low-...

 

United States Army Lieutenant Augusto RodríguezLieutenant Augusto Rodrígueza.k.a. Augustus RoderequesNickname(s)GustaveBorn1841 (1841)San Juan, Puerto RicoDiedMarch 22, 1880New Haven, ConnecticutPlace of burialEvergreen Cemetery, New Haven, ConnecticutAllegianceUnited States Union ArmyYears of service1862–1865RankLieutenantUnit15th Connecticut Volunteer InfantryBattles/warsAmerican Civil War*Battle of Fredericksburg*Battle of Wyse ForkOther workNew Haven firefighter Lieuten...