Integral of the Gaussian function, equal to sqrt(π)
This integral from statistics and physics is not to be confused with Gaussian quadrature, a method of numerical integration.
The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is
Abraham de Moivre originally discovered this type of integral in 1733, while Gauss published the precise integral in 1809,[1] attributing its discovery to Laplace. The integral has a wide range of applications. For example, with a slight change of variables it is used to compute the normalizing constant of the normal distribution. The same integral with finite limits is closely related to both the error function and the cumulative distribution function of the normal distribution. In physics this type of integral appears frequently, for example, in quantum mechanics, to find the probability density of the ground state of the harmonic oscillator. This integral is also used in the path integral formulation, to find the propagator of the harmonic oscillator, and in statistical mechanics, to find its partition function.
To justify the improper double integrals and equating the two expressions, we begin with an approximating function:
If the integral
were absolutely convergent we would have that its Cauchy principal value, that is, the limit
would coincide with
To see that this is the case, consider that
So we can compute
by just taking the limit
Taking the square of yields
Using Fubini's theorem, the above double integral can be seen as an area integral
taken over a square with vertices {(−a, a), (a, a), (a, −a), (−a, −a)} on the xy-plane.
Since the exponential function is greater than 0 for all real numbers, it then follows that the integral taken over the square's incircle must be less than , and similarly the integral taken over the square's circumcircle must be greater than . The integrals over the two disks can easily be computed by switching from Cartesian coordinates to polar coordinates:
A different technique, which goes back to Laplace (1812),[3] is the following. Let
Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e−x2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity. That is,
Thus, over the range of integration, x ≥ 0, and the variables y and s have the same limits. This yields:
Then, using Fubini's theorem to switch the order of integration:
In Laplace approximation, we deal only with up to second-order terms in Taylor expansion, so we consider .
In fact, since for all , we have the exact bounds:Then we can do the bound at Laplace approximation limit:
That is,
By trigonometric substitution, we exactly compute those two bounds: and
By taking the square root of the Wallis formula, we have , the desired lower bound limit. Similarly we can get the desired upper bound limit.
Conversely, if we first compute the integral with one of the other methods above, we would obtain a proof of the Wallis formula.
Thus, after the change of variable , this turns into the Euler integral
where is the gamma function. This shows why the factorial of a half-integer is a rational multiple of . More generally,
which can be obtained by substituting in the integrand of the gamma function to get .
This form is useful for calculating expectations of some continuous probability distributions related to the normal distribution, such as the log-normal distribution, for example.
Also,
where σ is a permutation of {1, …, 2N} and the extra factor on the right-hand side is the sum over all combinatorial pairings of {1, …, 2N} of N copies of A−1.
for some analytic functionf, provided it satisfies some appropriate bounds on its growth and some other technical criteria. (It works for some functions and fails for others. Polynomials are fine.) The exponential over a differential operator is understood as a power series.
While functional integrals have no rigorous definition (or even a nonrigorous computational one in most cases), we can define a Gaussian functional integral in analogy to the finite-dimensional case. [citation needed] There is still the problem, though, that is infinite and also, the functional determinant would also be infinite in general. This can be taken care of if we only consider ratios:
In the DeWitt notation, the equation looks identical to the finite-dimensional case.
n-dimensional with linear term
If A is again a symmetric positive-definite matrix, then (assuming all are column vectors)
One could also integrate by parts and find a recurrence relation to solve this.
Higher-order polynomials
Applying a linear change of basis shows that the integral of the exponential of a homogeneous polynomial in n variables may depend only on SL(n)-invariants of the polynomial. One such invariant is the discriminant,
zeros of which mark the singularities of the integral. However, the integral may also depend on other invariants.[5]
Exponentials of other even polynomials can numerically be solved using series. These may be interpreted as formal calculations when there is no convergence. For example, the solution to the integral of the exponential of a quartic polynomial is[citation needed]
The n + p = 0 mod 2 requirement is because the integral from −∞ to 0 contributes a factor of (−1)n+p/2 to each term, while the integral from 0 to +∞ contributes a factor of 1/2 to each term. These integrals turn up in subjects such as quantum field theory.
ResesiAlbum studio karya Chrisye bersama Eros Djarot dan Yockie Suryo PrayogoDirilis20 Februari 19831984 (album instrumentalia)Direkam1982–19831982–1983; awal 1984 (album instrumentalia)StudioMusica, JakartaGenre Pop new wave Durasi50:3934:22 (versi piringan hitam)LabelMusica StudiosProduser Eros Djarot Chrisye Yockie Suryo Prayogo Kronologi Chrisye Pantulan Cita(1981) Resesi(1983) Metropolitan(1984) Stiker label piringan hitamStiker label Resesi yang ditujukan sebagai promo radio Sam...
Харьковский Слободской кош (Х.С.к., укр. Харківський Слобідський Кіш)— украинская казачья военная формация вооружённых сил Украинской державы с 16 октября по 18 ноября 1918 года, с 18 ноября 1918 года в войсках У.Н.Р времён Гражданской войны в России. Содержание 1 Предпосылки форм...
1955 film The Last FrontierDirected byAnthony MannWritten byPhilip YordanRussell S. HughesBased onThe Gilded Rooster1947 novelby Richard Emery RobertsProduced byWilliam FadimanStarringVictor MatureGuy MadisonRobert PrestonAnne BancroftJames WhitmoreCinematographyWilliam C. MellorEdited byAl ClarkMusic byLeigh HarlineProductioncompanyColumbia PicturesDistributed byColumbia PicturesRelease date December 7, 1955 (1955-12-07) (New York City) Running time98 minutesCountryUnited ...
Un tuffo di Orlando Duque Red Bull Cliff Diving Hamburg 2009 Red Bull Cliff Diving World Series 2011 a La Rochelle, Francia Tuffatore che si lancia dalla piattaforma a 27,5 m a Bilbao La Red Bull Cliff Diving World Series è una competizione internazionale di tuffi nata nel 2009 (come Red Bull Cliff Diving Series) e organizzata da Red Bull. Dal 2014 gareggiano anche le donne. I tuffatori si lanciano da una piattaforma situata tra 26 e 28 metri. Le gare si tengono in una decina di location div...
Voce principale: Associazione Sportiva Giana Erminio. A.S. Giana ErminioStagione 2020-2021Sport calcio Squadra Giana Erminio Allenatore Cesare Albè (1ª-14ª) Oscar Brevi (15ª-38ª) All. in secondaCarica vacante Presidente Oreste Bamonte Serie C17º nel girone A (in corso) Miglior marcatoreCampionato: Perna (4)Totale: Perna (4) StadioCittà di Gorgonzola (3 766) 2019-2020 2021-2022 Dati aggiornati al 5 dicembre 2020Si invita a seguire il modello di voce Questa voce raccoglie ...
American mathematician (born 1943) This article is about the American mathematician. For other people named Richard Hamilton, see Richard Hamilton. Richard HamiltonHamilton in 1982Born (1943-01-10) January 10, 1943 (age 81)Cincinnati, Ohio, United StatesNationalityAmericanAlma materYale University (BA)Princeton University (PhD)Known forConvergence theorems for Ricci flowDirichlet problem for harmonic maps and harmonic map heat flowEarle–Hamilton fixed-point theoremGage–Hami...
League of American Football 2016League of American Football Competizione Campionato russo di football americano Sport Football americano Edizione 17ª Organizzatore FAFR Date dal 1º maggio 2016all'8 ottobre 2016 Luogo Russia Partecipanti 26 Formula Gironi territoriali e playoff Sede finale Mosca Risultati Vincitore Moscow Patriots(13º titolo) Secondo Moscow Spartans Semi-finalisti Minsk Litwins, Nizhnij Novgorod Raiders 52 Statistiche Incontri disputa...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Friedrich DominLahir(1902-05-15)15 Mei 1902Beuthen, Jerman (kini Bytom, Polandia)Meninggal18 Desember 1961(1961-12-18) (umur 59)Munich, JermanPekerjaanPemeranTahun aktif1939–1961 Friedrich Domin (15 Mei 1902 – 18 Desember 1...
Basketball game 2013 WNBA All-Star Game 1234 Total West 29143128 102 East 27223217 98 DateJuly 27, 2013ArenaMohegan Sun ArenaCityUncasville, ConnecticutMVPCandace ParkerAttendance9,323NetworkABC West East WNBA All-Star Game < 2011 2014 > The 2013 WNBA All-Star Game was an exhibition basketball game that was played on July 27, 2013, at the Mohegan Sun Arena in Uncasville, CT, the current home of the Connecticut Sun. This was the 11th edition of the WNBA All-Star Game, and was p...
Broad category of infrastructure projects, financed and constructed by the government For the 2015 Dutch film, see Public Works (film). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Public works – news · newspapers · books · scholar · JSTOR (June 2017) (Learn how and when to remove this message) A US gover...
Disambiguazione – Se stai cercando l'omonima attività condotta con l'ausilio di musica, vedi Intrattenimento musicale. Una lotta a palle di neve L'intrattenimento è un'attività o un evento che ha come scopo quello di catturare l'interesse di uno spettatore o di un pubblico, oppure, in senso più ampio, qualunque attività capace di suscitare curiosità o divertimento in chi la pratica.[1] Il termine quindi contempla sia chi o cosa intrattiene, sia chi è intrattenuto. Nelle ...
Le informazioni riportate non sono consigli medici e potrebbero non essere accurate. I contenuti hanno solo fine illustrativo e non sostituiscono il parere medico: leggi le avvertenze. Acido barbituricoformula di struttura Nome IUPAC1H,3H,5H-pirimidin-2,4,6-trione Nomi alternativimalonilurea 2,4,6-triidrossipirimidina Caratteristiche generaliFormula bruta o molecolareC4H4N2O3 Massa molecolare (u)128,09 g/mol Aspettosolido biancastro Numero CAS67-52-7 Numero EINECS200-658-0 PubChem6211 SMILES...
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2023) هيو تشيشولم معلومات شخصية الميلاد 22 فبراير 1866 [1] لندن الوفاة 29 سبت...
American baseball player and coach (1888–1976) Baseball player Red FaberPitcherBorn: (1888-09-06)September 6, 1888Cascade, Iowa, U.S.Died: September 25, 1976(1976-09-25) (aged 88)Chicago, Illinois, U.S.Batted: SwitchThrew: RightMLB debutApril 17, 1914, for the Chicago White SoxLast MLB appearanceSeptember 20, 1933, for the Chicago White SoxMLB statisticsWin–loss record254–213Earned run average3.15Strikeouts1,471 Teams Chicago White Sox (1914–1933) Ca...
Concept of soldier with superhuman abilities Not to be confused with the Amalgam Comics character Super-Soldier or the Marvel UK title Super Soldiers. A concept of a powered exoskeleton designed for the Future Soldier 2030 Initiative.[1] A super soldier (or supersoldier) is a concept soldier capable of operating beyond normal human abilities through technological augmentation, ranging from powered exoskeletons to advanced training regimens or (in fictional depictions) genetic modifica...
Operational arm of the United Nations United Nations Office for Project Services[note 1]AbbreviationUNOPSFormationDecember 1973 (as an office of United Nations Development Programme); January 1995 (as an independent agency)TypeIndependent self-financing member of the United Nations familyLegal statusActiveHeadquartersUN City, Copenhagen, DenmarkExecutive DirectorJorge Moreira da SilvaParent organizationUnited Nations SystemWebsitehttp://www.unops.org The United Nations Office for Proj...
Cyprinus carpio Pour les articles homonymes, voir carpe. Cyprinus carpio Carpe commune (phénotype sauvage).Classification Règne Animalia Embranchement Chordata Classe Actinopterygii Ordre Cypriniformes Super-famille Cyprinoidea Famille Cyprinidae Genre Cyprinus EspèceCyprinus carpioLinnaeus, 1758 Statut de conservation UICN VU A2ce : Vulnérable La carpe commune (Cyprinus carpio) est une espèce de poissons téléostéens de la famille des cyprinidés. Le nom de Carpe peut aussi dési...
Brazilian media conglomerate You can help expand this article with text translated from the corresponding article in Portuguese. (September 2024) Click [show] for important translation instructions. View a machine-translated version of the Portuguese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-...