Gaussian integral

A graph of the function and the area between it and the -axis, (i.e. the entire real line) which is equal to .

The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is

Abraham de Moivre originally discovered this type of integral in 1733, while Gauss published the precise integral in 1809,[1] attributing its discovery to Laplace. The integral has a wide range of applications. For example, with a slight change of variables it is used to compute the normalizing constant of the normal distribution. The same integral with finite limits is closely related to both the error function and the cumulative distribution function of the normal distribution. In physics this type of integral appears frequently, for example, in quantum mechanics, to find the probability density of the ground state of the harmonic oscillator. This integral is also used in the path integral formulation, to find the propagator of the harmonic oscillator, and in statistical mechanics, to find its partition function.

Although no elementary function exists for the error function, as can be proven by the Risch algorithm,[2] the Gaussian integral can be solved analytically through the methods of multivariable calculus. That is, there is no elementary indefinite integral for but the definite integral can be evaluated. The definite integral of an arbitrary Gaussian function is

Computation

By polar coordinates

A standard way to compute the Gaussian integral, the idea of which goes back to Poisson,[3] is to make use of the property that:

Consider the function on the plane , and compute its integral two ways:

  1. on the one hand, by double integration in the Cartesian coordinate system, its integral is a square:
  2. on the other hand, by shell integration (a case of double integration in polar coordinates), its integral is computed to be

Comparing these two computations yields the integral, though one should take care about the improper integrals involved.

where the factor of r is the Jacobian determinant which appears because of the transform to polar coordinates (r dr is the standard measure on the plane, expressed in polar coordinates Wikibooks:Calculus/Polar Integration#Generalization), and the substitution involves taking s = −r2, so ds = −2r dr.

Combining these yields so

Complete proof

To justify the improper double integrals and equating the two expressions, we begin with an approximating function:

If the integral were absolutely convergent we would have that its Cauchy principal value, that is, the limit would coincide with To see that this is the case, consider that

So we can compute by just taking the limit

Taking the square of yields

Using Fubini's theorem, the above double integral can be seen as an area integral taken over a square with vertices {(−a, a), (a, a), (a, −a), (−a, −a)} on the xy-plane.

Since the exponential function is greater than 0 for all real numbers, it then follows that the integral taken over the square's incircle must be less than , and similarly the integral taken over the square's circumcircle must be greater than . The integrals over the two disks can easily be computed by switching from Cartesian coordinates to polar coordinates:

(See to polar coordinates from Cartesian coordinates for help with polar transformation.)

Integrating,

By the squeeze theorem, this gives the Gaussian integral

By Cartesian coordinates

A different technique, which goes back to Laplace (1812),[3] is the following. Let

Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that ex2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity. That is,

Thus, over the range of integration, x ≥ 0, and the variables y and s have the same limits. This yields: Then, using Fubini's theorem to switch the order of integration:

Therefore, , as expected.

In Laplace approximation, we deal only with up to second-order terms in Taylor expansion, so we consider .

In fact, since for all , we have the exact bounds:Then we can do the bound at Laplace approximation limit:

That is,

By trigonometric substitution, we exactly compute those two bounds: and

By taking the square root of the Wallis formula, we have , the desired lower bound limit. Similarly we can get the desired upper bound limit. Conversely, if we first compute the integral with one of the other methods above, we would obtain a proof of the Wallis formula.

Relation to the gamma function

The integrand is an even function,

Thus, after the change of variable , this turns into the Euler integral

where is the gamma function. This shows why the factorial of a half-integer is a rational multiple of . More generally, which can be obtained by substituting in the integrand of the gamma function to get .

Generalizations

The integral of a Gaussian function

The integral of an arbitrary Gaussian function is

An alternative form is

This form is useful for calculating expectations of some continuous probability distributions related to the normal distribution, such as the log-normal distribution, for example.

Complex form

and more generally,for any positive-definite symmetric matrix .

n-dimensional and functional generalization

Suppose A is a symmetric positive-definite (hence invertible) n × n precision matrix, which is the matrix inverse of the covariance matrix. Then,

By completing the square, this generalizes to

This fact is applied in the study of the multivariate normal distribution.

Also, where σ is a permutation of {1, …, 2N} and the extra factor on the right-hand side is the sum over all combinatorial pairings of {1, …, 2N} of N copies of A−1.

Alternatively,[4]

for some analytic function f, provided it satisfies some appropriate bounds on its growth and some other technical criteria. (It works for some functions and fails for others. Polynomials are fine.) The exponential over a differential operator is understood as a power series.

While functional integrals have no rigorous definition (or even a nonrigorous computational one in most cases), we can define a Gaussian functional integral in analogy to the finite-dimensional case. [citation needed] There is still the problem, though, that is infinite and also, the functional determinant would also be infinite in general. This can be taken care of if we only consider ratios:

In the DeWitt notation, the equation looks identical to the finite-dimensional case.

n-dimensional with linear term

If A is again a symmetric positive-definite matrix, then (assuming all are column vectors)

Integrals of similar form

where is a positive integer

An easy way to derive these is by differentiating under the integral sign.

One could also integrate by parts and find a recurrence relation to solve this.

Higher-order polynomials

Applying a linear change of basis shows that the integral of the exponential of a homogeneous polynomial in n variables may depend only on SL(n)-invariants of the polynomial. One such invariant is the discriminant, zeros of which mark the singularities of the integral. However, the integral may also depend on other invariants.[5]

Exponentials of other even polynomials can numerically be solved using series. These may be interpreted as formal calculations when there is no convergence. For example, the solution to the integral of the exponential of a quartic polynomial is[citation needed]

The n + p = 0 mod 2 requirement is because the integral from −∞ to 0 contributes a factor of (−1)n+p/2 to each term, while the integral from 0 to +∞ contributes a factor of 1/2 to each term. These integrals turn up in subjects such as quantum field theory.

See also

References

Citations

  1. ^ Stahl, Saul (April 2006). "The Evolution of the Normal Distribution" (PDF). MAA.org. Retrieved May 25, 2018.
  2. ^ Cherry, G. W. (1985). "Integration in Finite Terms with Special Functions: the Error Function". Journal of Symbolic Computation. 1 (3): 283–302. doi:10.1016/S0747-7171(85)80037-7.
  3. ^ a b Lee, Peter M. "The Probability Integral" (PDF).
  4. ^ "Reference for Multidimensional Gaussian Integral". Stack Exchange. March 30, 2012.
  5. ^ Morozov, A.; Shakirove, Sh. (2009). "Introduction to integral discriminants". Journal of High Energy Physics. 2009 (12): 002. arXiv:0903.2595. Bibcode:2009JHEP...12..002M. doi:10.1088/1126-6708/2009/12/002.

Sources

Read other articles:

ResesiAlbum studio karya Chrisye bersama Eros Djarot dan Yockie Suryo PrayogoDirilis20 Februari 19831984 (album instrumentalia)Direkam1982–19831982–1983; awal 1984 (album instrumentalia)StudioMusica, JakartaGenre Pop new wave Durasi50:3934:22 (versi piringan hitam)LabelMusica StudiosProduser Eros Djarot Chrisye Yockie Suryo Prayogo Kronologi Chrisye Pantulan Cita(1981) Resesi(1983) Metropolitan(1984) Stiker label piringan hitamStiker label Resesi yang ditujukan sebagai promo radio Sam...

 

Харьковский Слободской кош (Х.С.к., укр. Харківський Слобідський Кіш)— украинская казачья военная формация вооружённых сил Украинской державы с 16 октября по 18 ноября 1918 года, с 18 ноября 1918 года в войсках У.Н.Р времён Гражданской войны в России. Содержание 1 Предпосылки форм...

 

1955 film The Last FrontierDirected byAnthony MannWritten byPhilip YordanRussell S. HughesBased onThe Gilded Rooster1947 novelby Richard Emery RobertsProduced byWilliam FadimanStarringVictor MatureGuy MadisonRobert PrestonAnne BancroftJames WhitmoreCinematographyWilliam C. MellorEdited byAl ClarkMusic byLeigh HarlineProductioncompanyColumbia PicturesDistributed byColumbia PicturesRelease date December 7, 1955 (1955-12-07) (New York City) Running time98 minutesCountryUnited ...

Un tuffo di Orlando Duque Red Bull Cliff Diving Hamburg 2009 Red Bull Cliff Diving World Series 2011 a La Rochelle, Francia Tuffatore che si lancia dalla piattaforma a 27,5 m a Bilbao La Red Bull Cliff Diving World Series è una competizione internazionale di tuffi nata nel 2009 (come Red Bull Cliff Diving Series) e organizzata da Red Bull. Dal 2014 gareggiano anche le donne. I tuffatori si lanciano da una piattaforma situata tra 26 e 28 metri. Le gare si tengono in una decina di location div...

 

Voce principale: Associazione Sportiva Giana Erminio. A.S. Giana ErminioStagione 2020-2021Sport calcio Squadra Giana Erminio Allenatore Cesare Albè (1ª-14ª) Oscar Brevi (15ª-38ª) All. in secondaCarica vacante Presidente Oreste Bamonte Serie C17º nel girone A (in corso) Miglior marcatoreCampionato: Perna (4)Totale: Perna (4) StadioCittà di Gorgonzola (3 766) 2019-2020 2021-2022 Dati aggiornati al 5 dicembre 2020Si invita a seguire il modello di voce Questa voce raccoglie ...

 

American mathematician (born 1943) This article is about the American mathematician. For other people named Richard Hamilton, see Richard Hamilton. Richard HamiltonHamilton in 1982Born (1943-01-10) January 10, 1943 (age 81)Cincinnati, Ohio, United StatesNationalityAmericanAlma materYale University (BA)Princeton University (PhD)Known forConvergence theorems for Ricci flowDirichlet problem for harmonic maps and harmonic map heat flowEarle–Hamilton fixed-point theoremGage–Hami...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

League of American Football 2016League of American Football Competizione Campionato russo di football americano Sport Football americano Edizione 17ª Organizzatore FAFR Date dal 1º maggio 2016all'8 ottobre 2016 Luogo  Russia Partecipanti 26 Formula Gironi territoriali e playoff Sede finale Mosca Risultati Vincitore  Moscow Patriots(13º titolo) Secondo  Moscow Spartans Semi-finalisti  Minsk Litwins,  Nizhnij Novgorod Raiders 52 Statistiche Incontri disputa...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Friedrich DominLahir(1902-05-15)15 Mei 1902Beuthen, Jerman (kini Bytom, Polandia)Meninggal18 Desember 1961(1961-12-18) (umur 59)Munich, JermanPekerjaanPemeranTahun aktif1939–1961 Friedrich Domin (15 Mei 1902 – 18 Desember 1...

Basketball game 2013 WNBA All-Star Game 1234 Total West 29143128 102 East 27223217 98 DateJuly 27, 2013ArenaMohegan Sun ArenaCityUncasville, ConnecticutMVPCandace ParkerAttendance9,323NetworkABC West East WNBA All-Star Game < 2011 2014 > The 2013 WNBA All-Star Game was an exhibition basketball game that was played on July 27, 2013, at the Mohegan Sun Arena in Uncasville, CT, the current home of the Connecticut Sun. This was the 11th edition of the WNBA All-Star Game, and was p...

 

Broad category of infrastructure projects, financed and constructed by the government For the 2015 Dutch film, see Public Works (film). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Public works – news · newspapers · books · scholar · JSTOR (June 2017) (Learn how and when to remove this message) A US gover...

 

Disambiguazione – Se stai cercando l'omonima attività condotta con l'ausilio di musica, vedi Intrattenimento musicale. Una lotta a palle di neve L'intrattenimento è un'attività o un evento che ha come scopo quello di catturare l'interesse di uno spettatore o di un pubblico, oppure, in senso più ampio, qualunque attività capace di suscitare curiosità o divertimento in chi la pratica.[1] Il termine quindi contempla sia chi o cosa intrattiene, sia chi è intrattenuto. Nelle ...

Le informazioni riportate non sono consigli medici e potrebbero non essere accurate. I contenuti hanno solo fine illustrativo e non sostituiscono il parere medico: leggi le avvertenze. Acido barbituricoformula di struttura Nome IUPAC1H,3H,5H-pirimidin-2,4,6-trione Nomi alternativimalonilurea 2,4,6-triidrossipirimidina Caratteristiche generaliFormula bruta o molecolareC4H4N2O3 Massa molecolare (u)128,09 g/mol Aspettosolido biancastro Numero CAS67-52-7 Numero EINECS200-658-0 PubChem6211 SMILES...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2023) هيو تشيشولم   معلومات شخصية الميلاد 22 فبراير 1866 [1]  لندن  الوفاة 29 سبت...

 

American baseball player and coach (1888–1976) Baseball player Red FaberPitcherBorn: (1888-09-06)September 6, 1888Cascade, Iowa, U.S.Died: September 25, 1976(1976-09-25) (aged 88)Chicago, Illinois, U.S.Batted: SwitchThrew: RightMLB debutApril 17, 1914, for the Chicago White SoxLast MLB appearanceSeptember 20, 1933, for the Chicago White SoxMLB statisticsWin–loss record254–213Earned run average3.15Strikeouts1,471 Teams Chicago White Sox (1914–1933) Ca...

Concept of soldier with superhuman abilities Not to be confused with the Amalgam Comics character Super-Soldier or the Marvel UK title Super Soldiers. A concept of a powered exoskeleton designed for the Future Soldier 2030 Initiative.[1] A super soldier (or supersoldier) is a concept soldier capable of operating beyond normal human abilities through technological augmentation, ranging from powered exoskeletons to advanced training regimens or (in fictional depictions) genetic modifica...

 

Operational arm of the United Nations United Nations Office for Project Services[note 1]AbbreviationUNOPSFormationDecember 1973 (as an office of United Nations Development Programme); January 1995 (as an independent agency)TypeIndependent self-financing member of the United Nations familyLegal statusActiveHeadquartersUN City, Copenhagen, DenmarkExecutive DirectorJorge Moreira da SilvaParent organizationUnited Nations SystemWebsitehttp://www.unops.org The United Nations Office for Proj...

 

دينوسوماب ضد وحيد النسيلة نوع جسم مضاد كامل يعالج تمدد تكيسات العظام،  واضطرابات عضلية هيكلية،  واستعدادية التهاب المفصل العظمي 1  [لغات أخرى]‏،  وارتجاع معدي مريئي،  وإصابة،  وسرطانة الرئة غير صغيرة الخلايا،  وهشاشة العظام،  والتهاب المريء،  و...

Cyprinus carpio Pour les articles homonymes, voir carpe. Cyprinus carpio Carpe commune (phénotype sauvage).Classification Règne Animalia Embranchement Chordata Classe Actinopterygii Ordre Cypriniformes Super-famille Cyprinoidea Famille Cyprinidae Genre Cyprinus EspèceCyprinus carpioLinnaeus, 1758 Statut de conservation UICN VU A2ce : Vulnérable La carpe commune (Cyprinus carpio) est une espèce de poissons téléostéens de la famille des cyprinidés. Le nom de Carpe peut aussi dési...

 

Brazilian media conglomerate You can help expand this article with text translated from the corresponding article in Portuguese. (September 2024) Click [show] for important translation instructions. View a machine-translated version of the Portuguese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-...