The Gromov–Hausdorff distance defines a notion of distance between any two metric spaces, thereby setting up the concept of a sequence of metric spaces which converges to another metric space. This is known as Gromov–Hausdorff convergence. Gromov found a condition on a sequence of compact metric spaces which ensures that a subsequence converges to some metric space relative to the Gromov–Hausdorff distance:[1]
Let (Xi, di) be a sequence of compact metric spaces with uniformly bounded diameter. Suppose that for every positive number ε there is a natural numberN and, for every i, the set Xi can be covered by Nmetric balls of radius ε. Then the sequence (Xi, di) has a subsequence which converges relative to the Gromov–Hausdorff distance.
The role of this theorem in the theory of Gromov–Hausdorff convergence may be considered as analogous to the role of the Arzelà–Ascoli theorem in the theory of uniform convergence.[2] Gromov first formally introduced it in his 1981 resolution of the Milnor–Wolf conjecture in the field of geometric group theory, where he applied it to define the asymptotic cone of certain metric spaces.[3] These techniques were later extended by Gromov and others, using the theory of ultrafilters.[4]
Consider a sequence of closed Riemannian manifolds with a uniform lower bound on the Ricci curvature and a uniform upper bound on the diameter. Then there is a subsequence which converges relative to the Gromov–Hausdorff distance.
The limit of a convergent subsequence may be a metric space without any smooth or Riemannian structure.[6] This special case of the metric compactness theorem is significant in the field of Riemannian geometry, as it isolates the purely metric consequences of lower Ricci curvature bounds.
Gromov, M. (1993). "Asymptotic invariants of infinite groups". In Niblo, Graham A.; Roller, Martin A. (eds.). Geometric group theory. Vol. 2. Symposium held at Sussex University (Sussex, July 1991). London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press. pp. 1–295. ISBN0-521-44680-5. MR1253544. Zbl0841.20039.