Geometric group theory

The Cayley graph of a free group with two generators. This is a hyperbolic group whose Gromov boundary is a Cantor set. Hyperbolic groups and their boundaries are important topics in geometric group theory, as are Cayley graphs.

Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups can act non-trivially (that is, when the groups in question are realized as geometric symmetries or continuous transformations of some spaces).

Another important idea in geometric group theory is to consider finitely generated groups themselves as geometric objects. This is usually done by studying the Cayley graphs of groups, which, in addition to the graph structure, are endowed with the structure of a metric space, given by the so-called word metric.

Geometric group theory, as a distinct area, is relatively new, and became a clearly identifiable branch of mathematics in the late 1980s and early 1990s. Geometric group theory closely interacts with low-dimensional topology, hyperbolic geometry, algebraic topology, computational group theory and differential geometry. There are also substantial connections with complexity theory, mathematical logic, the study of Lie groups and their discrete subgroups, dynamical systems, probability theory, K-theory, and other areas of mathematics.

In the introduction to his book Topics in Geometric Group Theory, Pierre de la Harpe wrote: "One of my personal beliefs is that fascination with symmetries and groups is one way of coping with frustrations of life's limitations: we like to recognize symmetries which allow us to recognize more than what we can see. In this sense the study of geometric group theory is a part of culture, and reminds me of several things that Georges de Rham practiced on many occasions, such as teaching mathematics, reciting Mallarmé, or greeting a friend".[1]: 3 

History

Geometric group theory grew out of combinatorial group theory that largely studied properties of discrete groups via analyzing group presentations, which describe groups as quotients of free groups; this field was first systematically studied by Walther von Dyck, student of Felix Klein, in the early 1880s,[2] while an early form is found in the 1856 icosian calculus of William Rowan Hamilton, where he studied the icosahedral symmetry group via the edge graph of the dodecahedron. Currently combinatorial group theory as an area is largely subsumed by geometric group theory. Moreover, the term "geometric group theory" came to often include studying discrete groups using probabilistic, measure-theoretic, arithmetic, analytic and other approaches that lie outside of the traditional combinatorial group theory arsenal.

In the first half of the 20th century, pioneering work of Max Dehn, Jakob Nielsen, Kurt Reidemeister and Otto Schreier, J. H. C. Whitehead, Egbert van Kampen, amongst others, introduced some topological and geometric ideas into the study of discrete groups.[3] Other precursors of geometric group theory include small cancellation theory and Bass–Serre theory. Small cancellation theory was introduced by Martin Grindlinger in the 1960s[4][5] and further developed by Roger Lyndon and Paul Schupp.[6] It studies van Kampen diagrams, corresponding to finite group presentations, via combinatorial curvature conditions and derives algebraic and algorithmic properties of groups from such analysis. Bass–Serre theory, introduced in the 1977 book of Serre,[7] derives structural algebraic information about groups by studying group actions on simplicial trees. External precursors of geometric group theory include the study of lattices in Lie groups, especially Mostow's rigidity theorem, the study of Kleinian groups, and the progress achieved in low-dimensional topology and hyperbolic geometry in the 1970s and early 1980s, spurred, in particular, by William Thurston's Geometrization program.

The emergence of geometric group theory as a distinct area of mathematics is usually traced to the late 1980s and early 1990s. It was spurred by the 1987 monograph of Mikhail Gromov "Hyperbolic groups"[8] that introduced the notion of a hyperbolic group (also known as word-hyperbolic or Gromov-hyperbolic or negatively curved group), which captures the idea of a finitely generated group having large-scale negative curvature, and by his subsequent monograph Asymptotic Invariants of Infinite Groups,[9] that outlined Gromov's program of understanding discrete groups up to quasi-isometry. The work of Gromov had a transformative effect on the study of discrete groups[10][11][12] and the phrase "geometric group theory" started appearing soon afterwards. (see e.g.[13]).

Modern themes and developments

Notable themes and developments in geometric group theory in 1990s and 2000s include:

  • Gromov's program to study quasi-isometric properties of groups.
A particularly influential broad theme in the area is Gromov's program[14] of classifying finitely generated groups according to their large scale geometry. Formally, this means classifying finitely generated groups with their word metric up to quasi-isometry. This program involves:
  1. The study of properties that are invariant under quasi-isometry. Examples of such properties of finitely generated groups include: the growth rate of a finitely generated group; the isoperimetric function or Dehn function of a finitely presented group; the number of ends of a group; hyperbolicity of a group; the homeomorphism type of the Gromov boundary of a hyperbolic group;[15] asymptotic cones of finitely generated groups (see e.g.[16][17]); amenability of a finitely generated group; being virtually abelian (that is, having an abelian subgroup of finite index); being virtually nilpotent; being virtually free; being finitely presentable; being a finitely presentable group with solvable Word Problem; and others.
  2. Theorems which use quasi-isometry invariants to prove algebraic results about groups, for example: Gromov's polynomial growth theorem; Stallings' ends theorem; Mostow rigidity theorem.
  3. Quasi-isometric rigidity theorems, in which one classifies algebraically all groups that are quasi-isometric to some given group or metric space. This direction was initiated by the work of Schwartz on quasi-isometric rigidity of rank-one lattices[18] and the work of Benson Farb and Lee Mosher on quasi-isometric rigidity of Baumslag–Solitar groups.[19]
  • The theory of word-hyperbolic and relatively hyperbolic groups. A particularly important development here is the work of Zlil Sela in 1990s resulting in the solution of the isomorphism problem for word-hyperbolic groups.[20] The notion of a relatively hyperbolic groups was originally introduced by Gromov in 1987[8] and refined by Farb[21] and Brian Bowditch,[22] in the 1990s. The study of relatively hyperbolic groups gained prominence in the 2000s.
  • Interactions with mathematical logic and the study of the first-order theory of free groups. Particularly important progress occurred on the famous Tarski conjectures, due to the work of Sela[23] as well as of Olga Kharlampovich and Alexei Myasnikov.[24] The study of limit groups and introduction of the language and machinery of non-commutative algebraic geometry gained prominence.
  • Interactions with computer science, complexity theory and the theory of formal languages. This theme is exemplified by the development of the theory of automatic groups,[25] a notion that imposes certain geometric and language theoretic conditions on the multiplication operation in a finitely generated group.
  • The study of isoperimetric inequalities, Dehn functions and their generalizations for finitely presented group. This includes, in particular, the work of Jean-Camille Birget, Aleksandr Olʹshanskiĭ, Eliyahu Rips and Mark Sapir[26][27] essentially characterizing the possible Dehn functions of finitely presented groups, as well as results providing explicit constructions of groups with fractional Dehn functions.[28]
  • The theory of toral or JSJ-decompositions for 3-manifolds was originally brought into a group theoretic setting by Peter Kropholler.[29] This notion has been developed by many authors for both finitely presented and finitely generated groups.[30][31][32][33][34]
  • Connections with geometric analysis, the study of C*-algebras associated with discrete groups and of the theory of free probability. This theme is represented, in particular, by considerable progress on the Novikov conjecture and the Baum–Connes conjecture and the development and study of related group-theoretic notions such as topological amenability, asymptotic dimension, uniform embeddability into Hilbert spaces, rapid decay property, and so on (see e.g.[35][36][37]).
  • Interactions with the theory of quasiconformal analysis on metric spaces, particularly in relation to Cannon's conjecture about characterization of hyperbolic groups with Gromov boundary homeomorphic to the 2-sphere.[38][39][40]
  • Finite subdivision rules, also in relation to Cannon's conjecture.[41]
  • Interactions with topological dynamics in the contexts of studying actions of discrete groups on various compact spaces and group compactifications, particularly convergence group methods[42][43]
  • Development of the theory of group actions on -trees (particularly the Rips machine), and its applications.[44]
  • The study of group actions on CAT(0) spaces and CAT(0) cubical complexes,[45] motivated by ideas from Alexandrov geometry.
  • Interactions with low-dimensional topology and hyperbolic geometry, particularly the study of 3-manifold groups (see, e.g.,[46]), mapping class groups of surfaces, braid groups and Kleinian groups.
  • Introduction of probabilistic methods to study algebraic properties of "random" group theoretic objects (groups, group elements, subgroups, etc.). A particularly important development here is the work of Gromov who used probabilistic methods to prove[47] the existence of a finitely generated group that is not uniformly embeddable into a Hilbert space. Other notable developments include introduction and study of the notion of generic-case complexity[48] for group-theoretic and other mathematical algorithms and algebraic rigidity results for generic groups.[49]
  • The study of automata groups and iterated monodromy groups as groups of automorphisms of infinite rooted trees. In particular, Grigorchuk's groups of intermediate growth, and their generalizations, appear in this context.[50][51]
  • The study of measure-theoretic properties of group actions on measure spaces, particularly introduction and development of the notions of measure equivalence and orbit equivalence, as well as measure-theoretic generalizations of Mostow rigidity.[52][53]
  • The study of unitary representations of discrete groups and Kazhdan's property (T)[54]
  • The study of Out(Fn) (the outer automorphism group of a free group of rank n) and of individual automorphisms of free groups. Introduction and the study of Culler-Vogtmann's outer space[55] and of the theory of train tracks[56] for free group automorphisms played a particularly prominent role here.
  • Development of Bass–Serre theory, particularly various accessibility results[57][58][59] and the theory of tree lattices.[60] Generalizations of Bass–Serre theory such as the theory of complexes of groups.[45]
  • The study of random walks on groups and related boundary theory, particularly the notion of Poisson boundary (see e.g.[61]). The study of amenability and of groups whose amenability status is still unknown.
  • Interactions with finite group theory, particularly progress in the study of subgroup growth.[62]
  • Studying subgroups and lattices in linear groups, such as , and of other Lie groups, via geometric methods (e.g. buildings), algebro-geometric tools (e.g. algebraic groups and representation varieties), analytic methods (e.g. unitary representations on Hilbert spaces) and arithmetic methods.
  • Group cohomology, using algebraic and topological methods, particularly involving interaction with algebraic topology and the use of morse-theoretic ideas in the combinatorial context; large-scale, or coarse (see e.g.[63]) homological and cohomological methods.
  • Progress on traditional combinatorial group theory topics, such as the Burnside problem,[64][65] the study of Coxeter groups and Artin groups, and so on (the methods used to study these questions currently are often geometric and topological).

Examples

The following examples are often studied in geometric group theory:

See also

References

  1. ^ P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. ISBN 0-226-31719-6, ISBN 0-226-31721-8.
  2. ^ Stillwell, John (2002), Mathematics and its history, Springer, p. 374, ISBN 978-0-387-95336-6
  3. ^ Bruce Chandler and Wilhelm Magnus. The history of combinatorial group theory. A case study in the history of ideas. Studies in the History of Mathematics and Physical Sciences, vo. 9. Springer-Verlag, New York, 1982.
  4. ^ Greendlinger, Martin (1960). "Dehn's algorithm for the word problem". Communications on Pure and Applied Mathematics. 13 (1): 67–83. doi:10.1002/cpa.3160130108.
  5. ^ Greendlinger, Martin (1961). "An analogue of a theorem of Magnus". Archiv der Mathematik. 12 (1): 94–96. doi:10.1007/BF01650530. S2CID 120083990.
  6. ^ Roger Lyndon and Paul Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin, 1977. Reprinted in the "Classics in mathematics" series, 2000.
  7. ^ J.-P. Serre, Trees. Translated from the 1977 French original by John Stillwell. Springer-Verlag, Berlin-New York, 1980. ISBN 3-540-10103-9.
  8. ^ a b Mikhail Gromov, Hyperbolic Groups, in "Essays in Group Theory" (Steve M. Gersten, ed.), MSRI Publ. 8, 1987, pp. 75–263.
  9. ^ Mikhail Gromov, "Asymptotic invariants of infinite groups", in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.
  10. ^ Iliya Kapovich and Nadia Benakli. Boundaries of hyperbolic groups. Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), pp. 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI, 2002. From the Introduction:" In the last fifteen years geometric group theory has enjoyed fast growth and rapidly increasing influence. Much of this progress has been spurred by remarkable work of M. L. Gromov [in Essays in group theory, 75–263, Springer, New York, 1987; in Geometric group theory, Vol. 2 (Sussex, 1991), 1–295, Cambridge Univ. Press, Cambridge, 1993], who has advanced the theory of word-hyperbolic groups (also referred to as Gromov-hyperbolic or negatively curved groups)."
  11. ^ Brian Bowditch, Hyperbolic 3-manifolds and the geometry of the curve complex. European Congress of Mathematics, pp. 103–115, Eur. Math. Soc., Zürich, 2005. From the Introduction:" Much of this can be viewed in the context of geometric group theory. This subject has seen very rapid growth over the last twenty years or so, though of course, its antecedents can be traced back much earlier. [...] The work of Gromov has been a major driving force in this. Particularly relevant here is his seminal paper on hyperbolic groups [Gr]."
  12. ^ Elek, Gabor (2006). "The mathematics of Misha Gromov". Acta Mathematica Hungarica. 113 (3): 171–185. doi:10.1007/s10474-006-0098-5. S2CID 120667382. p. 181 "Gromov's pioneering work on the geometry of discrete metric spaces and his quasi-isometry program became the locomotive of geometric group theory from the early eighties."
  13. ^ Geometric group theory. Vol. 1. Proceedings of the symposium held at Sussex University, Sussex, July 1991. Edited by Graham A. Niblo and Martin A. Roller. London Mathematical Society Lecture Note Series, 181. Cambridge University Press, Cambridge, 1993. ISBN 0-521-43529-3.
  14. ^ Mikhail Gromov, Asymptotic invariants of infinite groups, in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.
  15. ^ Iliya Kapovich and Nadia Benakli. Boundaries of hyperbolic groups. Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), pp. 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI, 2002.
  16. ^ Riley, Tim R. (2003). "Higher connectedness of asymptotic cones". Topology. 42 (6): 1289–1352. doi:10.1016/S0040-9383(03)00002-8.
  17. ^ Kramer, Linus; Shelah, Saharon; Tent, Katrin; Thomas, Simon (2005). "Asymptotic cones of finitely presented groups". Advances in Mathematics. 193 (1): 142–173. arXiv:math/0306420. doi:10.1016/j.aim.2004.04.012. S2CID 4769970.
  18. ^ Schwartz, R.E. (1995). "The quasi-isometry classification of rank one lattices". Publications Mathématiques de l'Institut des Hautes Études Scientifiques. 82 (1): 133–168. doi:10.1007/BF02698639. S2CID 67824718.
  19. ^ Farb, Benson; Mosher, Lee (1998). "A rigidity theorem for the solvable Baumslag–Solitar groups. With an appendix by Daryl Cooper". Inventiones Mathematicae. 131 (2): 419–451. doi:10.1007/s002220050210. MR 1608595. S2CID 121180189.
  20. ^ Sela, Zlil (1995). "The isomorphism problem for hyperbolic groups. I". Annals of Mathematics. (2). 141 (2): 217–283. doi:10.2307/2118520. JSTOR 2118520. MR 1324134.
  21. ^ Farb, Benson (1998). "Relatively hyperbolic groups". Geometric and Functional Analysis. 8 (5): 810–840. doi:10.1007/s000390050075. MR 1650094. S2CID 123370926.
  22. ^ Bowditch, Brian H. (1999). Treelike Structures Arising from Continua and Convergence Groups. Memoirs American Mathematical Society. Vol. 662. American Mathematical Society. ISBN 978-0-8218-1003-3.
  23. ^ Zlil Sela, Diophantine geometry over groups and the elementary theory of free and hyperbolic groups. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 87–92, Higher Ed. Press, Beijing, 2002.
  24. ^ Kharlampovich, Olga; Myasnikov, Alexei (1998). "Tarski's problem about the elementary theory of free groups has a positive solution". Electronic Research Announcements of the American Mathematical Society. 4 (14): 101–8. doi:10.1090/S1079-6762-98-00047-X. MR 1662319.
  25. ^ D. B. A. Epstein, J. W. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston. Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA, 1992.
  26. ^ Sapir, Mark; Birget, Jean-Camille; Rips, Eliyahu (2002). "Isoperimetric and isodiametric functions of groups". Annals of Mathematics. (2). 156 (2): 345–466. arXiv:math/9811105. doi:10.2307/3597195. JSTOR 3597195. S2CID 119728458.
  27. ^ Birget, Jean-Camille; Olʹshanskiĭ, Aleksandr Yu.; Rips, Eliyahu; Sapir, Mark (2002). "Isoperimetric functions of groups and computational complexity of the word problem". Annals of Mathematics. (2). 156 (2): 467–518. arXiv:math/9811106. doi:10.2307/3597196. JSTOR 3597196. S2CID 14155715.
  28. ^ Bridson, M.R. (1999). "Fractional isoperimetric inequalities and subgroup distortion". Journal of the American Mathematical Society. 12 (4): 1103–18. doi:10.1090/S0894-0347-99-00308-2. MR 1678924. S2CID 7981000.
  29. ^ Kropholler, P. H. (1990). "An Analogue of the Torus Decomposition Theorem for Certain Poincaré Duality Groups". Proceedings of the London Mathematical Society. s3-60 (3): 503–529. doi:10.1112/plms/s3-60.3.503. ISSN 1460-244X.
  30. ^ Rips, E.; Sela, Z. (1997). "Cyclic splittings of finitely presented groups and the canonical JSJ decomposition". Annals of Mathematics. Second Series. 146 (1): 53–109. doi:10.2307/2951832. JSTOR 2951832.
  31. ^ Dunwoody, M.J.; Sageev, M.E. (1999). "JSJ-splittings for finitely presented groups over slender groups". Inventiones Mathematicae. 135 (1): 25–44. Bibcode:1999InMat.135...25D. doi:10.1007/s002220050278. S2CID 16958457.
  32. ^ Scott, P.; Swarup, G.A. (2002). "Regular neighbourhoods and canonical decompositions for groups". Electronic Research Announcements of the American Mathematical Society. 8 (3): 20–28. doi:10.1090/S1079-6762-02-00102-6. MR 1928498.
  33. ^ Bowditch, B.H. (1998). "Cut points and canonical splittings of hyperbolic groups". Acta Mathematica. 180 (2): 145–186. doi:10.1007/BF02392898.
  34. ^ Fujiwara, K.; Papasoglu, P. (2006). "JSJ-decompositions of finitely presented groups and complexes of groups". Geometric and Functional Analysis. 16 (1): 70–125. arXiv:math/0507424. doi:10.1007/s00039-006-0550-2. S2CID 10105697.
  35. ^ Yu, G. (1998). "The Novikov conjecture for groups with finite asymptotic dimension". Annals of Mathematics. Second Series. 147 (2): 325–355. doi:10.2307/121011. JSTOR 121011.
  36. ^ G. Yu. The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Inventiones Mathematicae, vol 139 (2000), no. 1, pp. 201–240.
  37. ^ Mineyev, I.; Yu, G. (2002). "The Baum–Connes conjecture for hyperbolic groups". Inventiones Mathematicae. 149 (1): 97–122. arXiv:math/0105086. Bibcode:2002InMat.149...97M. doi:10.1007/s002220200214. S2CID 7940721.
  38. ^ Bonk, Mario; Kleiner, Bruce (2005). "Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary". Geometry & Topology. 9: 219–246. arXiv:math/0208135. doi:10.2140/gt.2005.9.219. S2CID 786904.
  39. ^ Marc Bourdon and Hervé Pajot. Quasi-conformal geometry and hyperbolic geometry. Rigidity in dynamics and geometry (Cambridge, 2000), pp. 1–17, Springer, Berlin, 2002.
  40. ^ Mario Bonk, Quasiconformal geometry of fractals. International Congress of Mathematicians. Vol. II, pp. 1349–1373, Eur. Math. Soc., Zürich, 2006.
  41. ^ Cannon, James W.; Floyd, William J.; Parry, Walter R. (2001). "Finite subdivision rules". Conformal Geometry and Dynamics. 5 (8): 153–196. Bibcode:2001CGDAM...5..153C. doi:10.1090/S1088-4173-01-00055-8. MR 1875951.
  42. ^ P. Tukia. Generalizations of Fuchsian and Kleinian groups. First European Congress of Mathematics, Vol. II (Paris, 1992), pp. 447–461, Progr. Math., 120, Birkhäuser, Basel, 1994.
  43. ^ Yaman, Asli (2004). "A topological characterisation of relatively hyperbolic groups". Journal für die Reine und Angewandte Mathematik. 566: 41–89. MR 2039323.
  44. ^ Bestvina, M.; Feighn, M. (1995). "Stable actions of groups on real trees". Inventiones Mathematicae. 121 (2): 287–321. Bibcode:1995InMat.121..287B. doi:10.1007/BF01884300. S2CID 122048815.
  45. ^ a b Bridson & Haefliger 1999
  46. ^ M. Kapovich, Hyperbolic manifolds and discrete groups. Progress in Mathematics, 183. Birkhäuser Boston, Inc., Boston, MA, 2001.
  47. ^ M. Gromov. Random walk in random groups. Geometric and Functional Analysis, vol. 13 (2003), no. 1, pp. 73–146.
  48. ^ Kapovich, I.; Miasnikov, A.; Schupp, P.; Shpilrain, V. (2003). "Generic-case complexity, decision problems in group theory, and random walks". Journal of Algebra. 264 (2): 665–694. arXiv:math/0203239. doi:10.1016/S0021-8693(03)00167-4.
  49. ^ Kapovich, I.; Schupp, P.; Shpilrain, V. (2006). "Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups". Pacific Journal of Mathematics. 223 (1): 113–140. arXiv:math/0303386. doi:10.2140/pjm.2006.223.113.
  50. ^ L. Bartholdi, R. I. Grigorchuk and Z. Sunik. Branch groups. Handbook of algebra, Vol. 3, pp. 989-1112, North-Holland, Amsterdam, 2003.
  51. ^ V. Nekrashevych. Self-similar groups. Mathematical Surveys and Monographs, 117. American Mathematical Society, Providence, RI, 2005. ISBN 0-8218-3831-8.
  52. ^ Furman, A. (1999). "Gromov's measure equivalence and rigidity of higher rank lattices". Annals of Mathematics. Second Series. 150 (3): 1059–81. arXiv:math/9911262. Bibcode:1999math.....11262F. doi:10.2307/121062. JSTOR 121062. S2CID 15408706.
  53. ^ Monod, N.; Shalom, Y. (2006). "Orbit equivalence rigidity and bounded cohomology". Annals of Mathematics. Second Series. 164 (3): 825–878. doi:10.4007/annals.2006.164.825. JSTOR 20160009.
  54. ^ Y. Shalom. The algebraization of Kazhdan's property (T). International Congress of Mathematicians. Vol. II, pp. 1283–1310, Eur. Math. Soc., Zürich, 2006.
  55. ^ Culler, M.; Vogtmann, K. (1986). "Moduli of graphs and automorphisms of free groups". Inventiones Mathematicae. 84 (1): 91–119. Bibcode:1986InMat..84...91C. doi:10.1007/BF01388734. S2CID 122869546.
  56. ^ Bestvina, Mladen; Handel, Michael (1992). "Train tracks and automorphisms of free groups". Annals of Mathematics. 2. 135 (1): 1–51. doi:10.2307/2946562. JSTOR 2946562. MR 1147956.
  57. ^ Dunwoody, M.J. (1985). "The accessibility of finitely presented groups". Inventiones Mathematicae. 81 (3): 449–457. Bibcode:1985InMat..81..449D. doi:10.1007/BF01388581. S2CID 120065939.
  58. ^ Bestvina, M.; Feighn, M. (1991). "Bounding the complexity of simplicial group actions on trees". Inventiones Mathematicae. 103 (3): 449–469. Bibcode:1991InMat.103..449B. doi:10.1007/BF01239522. S2CID 121136037.
  59. ^ Sela, Zlil (1997). "Acylindrical accessibility for groups". Inventiones Mathematicae. 129 (3): 527–565. Bibcode:1997InMat.129..527S. doi:10.1007/s002220050172. S2CID 122548154.
  60. ^ Hyman Bass and Alexander Lubotzky. Tree lattices. With appendices by Hyman Bass, Lisa Carbone, Alexander Lubotzky, G. Rosenberg and Jacques Tits. Progress in Mathematics, 176. Birkhäuser Boston, Inc., Boston, MA, 2001. ISBN 0-8176-4120-3.
  61. ^ Kaimanovich, V.A. (2000). "The Poisson formula for groups with hyperbolic properties". Annals of Mathematics. 2. 152 (3): 659–692. arXiv:math/9802132. doi:10.2307/2661351. JSTOR 2661351. S2CID 14774503.
  62. ^ Alexander Lubotzky and Dan Segal. Subgroup growth. Progress in Mathematics, 212. Birkhäuser Verlag, Basel, 2003. ISBN 3-7643-6989-2. MR1978431
  63. ^ Bestvina, Mladen; Kapovich, Michael; Kleiner, Bruce (2002). "Van Kampen's embedding obstruction for discrete groups". Inventiones Mathematicae. 150 (2): 219–235. arXiv:math/0010141. Bibcode:2002InMat.150..219B. doi:10.1007/s00222-002-0246-7. MR 1933584. S2CID 7153145.
  64. ^ Ivanov, S.V. (1994). "The free Burnside groups of sufficiently large exponents". International Journal of Algebra and Computation. 4 (1n2): 1–309. doi:10.1142/S0218196794000026.
  65. ^ Lysënok, I.G. (1996). "Infinite Burnside groups of even exponent". Izvestiya: Mathematics. 60 (3): 453–654. Bibcode:1996IzMat..60..453L. doi:10.1070/im1996v060n03abeh000077. S2CID 250838960.

Books and monographs

These texts cover geometric group theory and related topics.

  • Clay, Matt; Margalit, Dan (2017). Office Hours with a Geometric Group Theorist. Princeton University Press. ISBN 978-0-691-15866-2.

Read other articles:

This is a list of windmills in the English county of West Yorkshire. Locations Location Name of mill andgrid reference Type Maps First mentionor built Last mention or demise Photograph Aberford Barkeston Mill 1216[1] 1216[1] Aberford Hicklam MillSE 434 359 Tower 18th century[2] Windmill World Aberford Lotherton Mill 1720[1] 1720[1] Barwick in Elmet Barwick Mill[3] 1850s[3] Demolished 1950s[3] Birstall Brownhill MillSE 233 262 Tow...

English landowner and politician Coulson Fellowes (1696–1769) was an English landowner and politician, Member of Parliament for Huntingdonshire from 1741 to 1761.[1] Life He was the eldest son of the barrister William Fellowes and his wife Mary Martyn; his maternal grandmother was Susannah Coulson, sister of Thomas Coulson. He matriculated at Christ Church, Oxford in 1716. He was called to the bar at Lincoln's Inn in 1723.[2] Fellowes was on a Grand Tour in France and Italy ...

Uranium tetrafluoride Names IUPAC names Uranium(IV) fluorideUranium tetrafluoride Identifiers CAS Number 10049-14-6 Y 3D model (JSmol) Interactive image ChemSpider 14676181 Y ECHA InfoCard 100.030.142 EC Number 233-170-1 PubChem CID 61461 UNII PJ46VTD8B2 Y CompTox Dashboard (EPA) DTXSID30892258 InChI InChI=1S/4FH.2U/h4*1H;;/q;;;;2*+2/p-4 YKey: CWWZGQYYTNZESQ-UHFFFAOYSA-J YInChI=1/4FH.2U/h4*1H;;/q;;;;2*+2/p-4Key: CWWZGQYYTNZESQ-XBHQNQODAW SMILES F[U](F)(F)F P...

Athènes 2004 Généralités Sport Tir à l'arc Organisateur(s) Grèce Édition 13e Lieu(x) Athènes Date du 12 août 2004au 21 août 2004 Nations 43[1] Participants 128 athlètes (64 hommes, 64 femmes) Épreuves 4 Site(s) Stade panathénaïque Navigation Sydney 2000 Pékin 2008 modifier les épreuves de tir à l'arc des Jeux olympiques d'été de 2004 se sont déroulées sur le stade qui accueillit en 1896 les Iers Jeux olympiques de l'ère moderne : le stade panathénaïque. Le stade, ...

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 9 de marzo de 2020. Bajo sospecha Título Above SuspicionFicha técnicaDirección Richard ThorpeProducción Leon GordonVictor SavilleGuion Keith WinterMelville BakerPatricia ColemanBasada en Above Suspicion de Helen MacInnesMúsica Bronislau KaperFotografía Robert H. PlanckMontaje George HivelyVestuario Gile SteeleProtagonistas Joan CrawfordFred MacMurrayBasil RathboneConrad V...

Silbersee IV, 2014 Der Silbersee IV ist ein Stillgewässer im Landschaftsschutzgebiet Silberseen und Schmaloer Heide bei Haltern am See. Er liegt östlich des Silbersees III und ist deutlich kleiner. Er wird ausschließlich zur Quarzsandgewinnung genutzt durch die Quarzwerke Haltern. Er ist nicht zugänglich.[1] Siehe auch Liste von Seen in Nordrhein-Westfalen Weblinks Commons: Silbersee IV (Haltern am See) – Sammlung von Bildern, Videos und Audiodateien Einzelnachweise ↑ Hal...

Friedrich EbertPresiden Jerman(Republik Weimar)Masa jabatan11 February 1919 – 28 February 1925PenggantiPaul von HindenburgKanselir JermanRepublik WeimarMasa jabatan9 November 1918 – 13 February 1919 Informasi pribadiLahir4 February 1871Heidelberg, Baden, Kekaisaran JermanMeninggal28 Februari 1925(1925-02-28) (umur 54)Berlin, JermanPartai politikPartai Sosial Demokrat JermanTanda tanganSunting kotak info • L • B Friedrich Ebert (/ˈiːbərt/; 4 Februari 1871 –...

Wappen Deutschlandkarte 49.2997222222228.5103Koordinaten: 49° 18′ N, 8° 30′ O Basisdaten Bundesland: Baden-Württemberg Regierungsbezirk: Karlsruhe Landkreis: Rhein-Neckar-Kreis Höhe: 103 m ü. NHN Fläche: 15,96 km2 Einwohner: 6315 (31. Dez. 2022)[1] Bevölkerungsdichte: 396 Einwohner je km2 Postleitzahl: 68804 Vorwahl: 06205 Kfz-Kennzeichen: HD Gemeindeschlüssel: 08 2 26 003 LOCODE: DE ALM Adresse der Gemei...

Artikel ini bukan mengenai proyeksi isometris.Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Isometri – berita · surat kabar · buku · cendekiawan · JSTOR (Juni 2016)Dalam matematika, isometri (atau kekongruenan, atau tranformasi (yang) kongruen) adalah tr...

Les yeux plus gros que le mondeStudio album by Black MReleased31 March 2014Genrehip hop, R&BLabelWati BProducerRenaud Rebillaud SkalpovichBlack M chronology Les yeux plus gros que le monde(2014) Éternel insatisfait(2016) Les yeux plus gros que le monde (literally The Eyes Greater than the World) is a 2014 album by the French-Guinean artist Black M. It was released on 31 March 2014 containing 19 tracks almost all of which appeared on SNEP based on downloads. The album sold 400,000 cop...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Garuda 2004 film – news · newspapers · books · scholar · JSTOR (April 2015) (Learn how and when to rem...

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Denton Regional Medical Center – news · newspapers · books · scholar · JSTOR (April 2020) (Learn how and when to remove this template message) Hospital in Texas, United StatesMedical City DentonHCAGeographyLocationDenton, Texas, United StatesOrganizationCare systemPublicTypeGeneralAffiliated universityNone...

  لمعانٍ أخرى، طالع ديك سكوت (توضيح). ديك سكوت (بالإنجليزية: Dick Scott)‏  معلومات شخصية الميلاد 26 ديسمبر 1941  ثيتفورد  تاريخ الوفاة 10 فبراير 2018 (76 سنة)   مركز اللعب وسط الجنسية المملكة المتحدة  المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1960–1963 نورويتش سيتي 28 (1) 1963–1964 كا�...

American video game designer Sean VanamanBorn (1984-06-16) June 16, 1984 (age 39)Cork, IrelandNationalityAmericanOccupation(s)Video game designer, writer, podcasterYears active2009–presentKnown forCampo SantoNotable workWallace & Gromit's Grand AdventuresPuzzle Agent 2Tales of Monkey IslandThe Walking DeadFirewatchHalf-Life: AlyxWebsitecamposanto.com Sean Vanaman[1] (born June 16, 1984) is an American video game designer, writer, and podcaster. He was the co-proje...

Penjadwalan kunci DES yang menunjukkan proses pembuatan kunci ronde/subkunci (tanda <<< menunjukkan geseran melingkar ke kiri) Dalam kriptografi, penjadwalan kunci adalah algoritme yang menghitung kunci ronde dari kunci utama. Penjadwalan kunci dibutuhkan untuk penyandian yang menggunakan struktur yang sama berulang kali (biasa disebut ronde) dengan jumlah tetap agar jalannya tiap ronde berbeda-beda. Daftar pustaka Lars R. Knudsen dan John Erik Mathiassen (2004). On the Role of Key S...

A Hindu mercantile caste NagaratharRaja 'Sir' Annamalai Chettiar, Raja of ChettinadTotal populationc. 110,000-125,000[1]Regions with significant populationsIndia: Chettinad region of Tamil Nadu, ChennaiLanguagesTamilReligionHinduismRelated ethnic groupsTamil people, Dravidian people The Nagarathar (also known as Nattukottai Chettiar) is a Tamil caste found native in Tamil Nadu, India. They are a mercantile community who are traditionally involved in commerce, banking and money lending...

2013 songFrozen HeartSongfrom the album Frozen PublishedWonderland Music CompanyReleasedNovember 25, 2013Recorded2012[1]GenreShow tuneLength1:45LabelWalt DisneySongwriter(s) Kristen Anderson-Lopez Robert Lopez Producer(s) Kristen Anderson-Lopez Robert Lopez Christophe Beck Chris Montan Tom MacDougall Frozen Heart is a song from the 2013 Disney animated film Frozen, with music and lyrics by Kristen-Anderson Lopez and Robert Lopez and performed in the film's prologue by a group of iceme...

2002 greatest hits album by the Rolling StonesForty LicksGreatest hits album by the Rolling StonesReleased30 September 2002Recorded10 January 1964 – 7 June 2002GenreRockLength155:52LabelVirginABKCODeccaProducerAndrew Loog OldhamThe Rolling StonesJimmy MillerChris KimseyDon WasDust BrothersThe Rolling Stones chronology No Security(1998) Forty Licks(2002) Singles 1963–1965(2004) Singles from Forty Licks Don't StopReleased: 30 September 2002 Professional ratingsReview scoresSourceRat...

19th PunjabisActive1857 - 1922CountryBritish IndiaBranchBritish Indian ArmyTypeInfantrySize2 BattalionsNickname(s)Sherdil-ki-PaltanUniformRed; faced dark blueEngagementsIndian Mutiny 1857-58Bhutan War 1864-66Second Afghan War 1878-80Tibet 1903-04First World War 1914-18CommandersNotablecommandersField Marshal M Ayub KhanMilitary unit The 19th Punjabis was an infantry regiment of the British Indian Army. It was raised in 1857, as the 7th Regiment of Punjab Infantry. It was designated as the 19t...

Игнитрон И 50/1500 Рту́тный выпрями́тель, игнитро́н, игнайтрон (от лат. ignis — огонь и электрон) — одноанодный ионный прибор с ртутным катодом и управляемым дуговым разрядом. Применяется в качестве электрического вентиля в мощных выпрямительных устройствах, электро�...