While the theorem shows that the deformation space of (complete) hyperbolic structures on a finite volume hyperbolic -manifold (for ) is a point, for a hyperbolic surface of genus there is a moduli space of dimension that parameterizes all metrics of constant curvature (up to diffeomorphism), a fact essential for Teichmüller theory. There is also a rich theory of deformation spaces of hyperbolic structures on infinite volume manifolds in three dimensions.
The theorem
The theorem can be given in a geometric formulation (pertaining to finite-volume, complete manifolds), and in an algebraic formulation (pertaining to lattices in Lie groups).
Geometric form
Let be the -dimensional hyperbolic space. A complete hyperbolic manifold can be defined as a quotient of by a group of isometries acting freely and properly discontinuously (it is equivalent to define it as a Riemannian manifold with sectional curvature -1 which is complete). It is of finite volume if the integral of a volume form is finite (which is the case, for example, if it is compact). The Mostow rigidity theorem may be stated as:
Suppose and are complete finite-volume hyperbolic manifolds of dimension . If there exists an isomorphism then it is induced by a unique isometry from to .
Here is the fundamental group of a manifold . If is an hyperbolic manifold obtained as the quotient of by a group then .
An equivalent statement is that any homotopy equivalence from to can be homotoped to a unique isometry. The proof actually shows that if has greater dimension than then there can be no homotopy equivalence between them.
Let and and be two lattices in and suppose that there is a group isomorphism . Then and are conjugate in . That is, there exists a such that .
In greater generality
Mostow rigidity holds (in its geometric formulation) more generally for fundamental groups of all complete, finite volume, non-positively curved (without Euclidean factors) locally symmetric spaces of dimension at least three, or in its algebraic formulation for all lattices in simple Lie groups not locally isomorphic to .
Applications
It follows from the Mostow rigidity theorem that the group of isometries of a finite-volume hyperbolic n-manifold M (for n>2) is finite and isomorphic to .
Spatzier, R. J. (1995), "Harmonic Analysis in Rigidity Theory", in Petersen, Karl E.; Salama, Ibrahim A. (eds.), Ergodic Theory and its Connection with Harmonic Analysis, Proceedings of the 1993 Alexandria Conference, Cambridge University Press, pp. 153–205, ISBN0-521-45999-0. (Provides a survey of a large variety of rigidity theorems, including those concerning Lie groups, algebraic groups and dynamics of flows. Includes 230 references.)