In a 1980 paper[3] Floyd introduced a way to compactify a finitely generated group by adding to it a boundary which came to be called the Floyd boundary.[4][5]
Floyd also wrote a number of joint papers with James W. Cannon and Walter R. Parry exploring a combinatorial approach to the Cannon conjecture[6][7][8] using finite subdivision rules. This represents one of the few plausible lines of attack of the conjecture.[9]
^J. W. Cannon, W. J. Floyd, W. R. Parry. Sufficiently rich families of planar rings. Annales Academiæ Scientiarium Fennicæ. Mathematica. vol. 24 (1999), no. 2, pp. 265–304.
^J. W. Cannon, W. J. Floyd, W. R. Parry. Finite subdivision rules. Conformal Geometry and Dynamics, vol. 5 (2001), pp. 153–196.
^J. W. Cannon, W. J. Floyd, W. R. Parry. Expansion complexes for finite subdivision rules. I. Conformal Geometry and Dynamics, vol. 10 (2006), pp. 63–99.
^Ilya Kapovich, and Nadia Benakli, in Boundaries of hyperbolic groups, Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), pp. 39–93, Contemporary Mathematics, 296, American Mathematical Society, Providence, RI, 2002, ISBN0-8218-2822-3MR1921706; pp. 63–64