Kazhdan's property (T)

In mathematics, a locally compact topological group G has property (T) if the trivial representation is an isolated point in its unitary dual equipped with the Fell topology. Informally, this means that if G acts unitarily on a Hilbert space and has "almost invariant vectors", then it has a nonzero invariant vector. The formal definition, introduced by David Kazhdan (1967), gives this a precise, quantitative meaning.

Although originally defined in terms of irreducible representations, property (T) can often be checked even when there is little or no explicit knowledge of the unitary dual. Property (T) has important applications to group representation theory, lattices in algebraic groups over local fields, ergodic theory, geometric group theory, expanders, operator algebras and the theory of networks.

Definitions

Let G be a σ-compact, locally compact topological group and π : GU(H) a unitary representation of G on a (complex) Hilbert space H. If ε > 0 and K is a compact subset of G, then a unit vector ξ in H is called an (ε, K)-invariant vector if

The following conditions on G are all equivalent to G having property (T) of Kazhdan, and any of them can be used as the definition of property (T).

(1) The trivial representation is an isolated point of the unitary dual of G with Fell topology.

(2) Any sequence of continuous positive definite functions on G converging to 1 uniformly on compact subsets, converges to 1 uniformly on G.

(3) Every unitary representation of G that has an (ε, K)-invariant unit vector for any ε > 0 and any compact subset K, has a non-zero invariant vector.

(4) There exists an ε > 0 and a compact subset K of G such that every unitary representation of G that has an (ε, K)-invariant unit vector, has a nonzero invariant vector.

(5) Every continuous affine isometric action of G on a real Hilbert space has a fixed point (property (FH)).

If H is a closed subgroup of G, the pair (G,H) is said to have relative property (T) of Margulis if there exists an ε > 0 and a compact subset K of G such that whenever a unitary representation of G has an (ε, K)-invariant unit vector, then it has a non-zero vector fixed by H.

Discussion

Definition (4) evidently implies definition (3). To show the converse, let G be a locally compact group satisfying (3), assume by contradiction that for every K and ε there is a unitary representation that has a (K, ε)-invariant unit vector and does not have an invariant vector. Look at the direct sum of all such representation and that will negate (4).

The equivalence of (4) and (5) (Property (FH)) is the Delorme-Guichardet theorem. The fact that (5) implies (4) requires the assumption that G is σ-compact (and locally compact) (Bekka et al., Theorem 2.12.4).

General properties

  • Property (T) is preserved under quotients: if G has property (T) and H is a quotient group of G then H has property (T). Equivalently, if a homomorphic image of a group G does not have property (T) then G itself does not have property (T).
  • If G has property (T) then G/[G, G] is compact.
  • Any countable discrete group with property (T) is finitely generated.
  • An amenable group which has property (T) is necessarily compact. Amenability and property (T) are in a rough sense opposite: they make almost invariant vectors easy or hard to find.
  • Kazhdan's theorem: If Γ is a lattice in a Lie group G then Γ has property (T) if and only if G has property (T). Thus for n ≥ 3, the special linear group SL(n, Z) has property (T).

Examples

  • Compact topological groups have property (T). In particular, the circle group, the additive group Zp of p-adic integers, compact special unitary groups SU(n) and all finite groups have property (T).
  • Simple real Lie groups of real rank at least two have property (T). This family of groups includes the special linear groups SL(n, R) for n ≥ 3 and the special orthogonal groups SO(p,q) for p > q ≥ 2 and SO(p,p) for p ≥ 3. More generally, this holds for simple algebraic groups of rank at least two over a local field.
  • The pairs (Rn ⋊ SL(n, R), Rn) and (Zn ⋊ SL(n, Z), Zn) have relative property (T) for n ≥ 2.
  • For n ≥ 2, the noncompact Lie group Sp(n, 1) of isometries of a quaternionic hermitian form of signature (n,1) is a simple Lie group of real rank 1 that has property (T). By Kazhdan's theorem, lattices in this group have property (T). This construction is significant because these lattices are hyperbolic groups; thus, there are groups that are hyperbolic and have property (T). Explicit examples of groups in this category are provided by arithmetic lattices in Sp(n, 1) and certain quaternionic reflection groups.

Examples of groups that do not have property (T) include

  • The additive groups of integers Z, of real numbers R and of p-adic numbers Qp.
  • The special linear groups SL(2, Z) and SL(2, R), as a result of the existence of complementary series representations near the trivial representation, although SL(2,Z) has property (τ) with respect to principal congruence subgroups, by Selberg's theorem.
  • Noncompact solvable groups.
  • Nontrivial free groups and free abelian groups.

Discrete groups

Historically property (T) was established for discrete groups Γ by embedding them as lattices in real or p-adic Lie groups with property (T). There are now several direct methods available.

  • The algebraic method of Shalom applies when Γ = SL(n, R) with R a ring and n ≥ 3; the method relies on the fact that Γ can be boundedly generated, i.e. can be expressed as a finite product of easier subgroups, such as the elementary subgroups consisting of matrices differing from the identity matrix in one given off-diagonal position.
  • The geometric method has its origins in ideas of Garland, Gromov and Pierre Pansu. Its simplest combinatorial version is due to Zuk: let Γ be a discrete group generated by a finite subset S, closed under taking inverses and not containing the identity, and define a finite graph with vertices S and an edge between g and h whenever g−1h lies in S. If this graph is connected and the smallest non-zero eigenvalue of the Laplacian of the corresponding simple random walk is greater than 1/2, then Γ has property (T). A more general geometric version, due to Zuk and Ballmann & Swiatkowski (1997), states that if a discrete group Γ acts properly discontinuously and cocompactly on a contractible 2-dimensional simplicial complex with the same graph theoretic conditions placed on the link at each vertex, then Γ has property (T). Many new examples of hyperbolic groups with property (T) can be exhibited using this method.
  • The computer-assisted method is based on a suggestion by Narutaka Ozawa and has been successfully implemented by several researchers. It is based on the algebraic characterization of property (T) in terms of an inequality in the real group algebra, for which a solution may be found by solving a semidefinite programming problem numerically on a computer. Notably, this method has confirmed property (T) for the automorphism group of the free group of rank at least 5. No human proof is known for this result.

Applications

  • Grigory Margulis used the fact that SL(n, Z) (for n ≥ 3) has property (T) to construct explicit families of expanding graphs, that is, graphs with the property that every subset has a uniformly large "boundary". This connection led to a number of recent studies giving an explicit estimate of Kazhdan constants, quantifying property (T) for a particular group and a generating set.
  • Alain Connes used discrete groups with property (T) to find examples of type II1 factors with countable fundamental group, so in particular not the whole of positive reals . Sorin Popa subsequently used relative property (T) for discrete groups to produce a type II1 factor with trivial fundamental group.
  • Groups with property (T) also have Serre's property FA.[1]
  • Toshikazu Sunada observed that the positivity of the bottom of the spectrum of a "twisted" Laplacian on a closed manifold is related to property (T) of the fundamental group.[2] This observation yields Brooks' result which says that the bottom of the spectrum of the Laplacian on the universal covering manifold over a closed Riemannian manifold M equals zero if and only if the fundamental group of M is amenable.[3]

References

  1. ^ Watatani, Yasuo (1981). "Property T of Kazhdan implies property FA of Serre". Math. Japon. 27: 97–103. MR 0649023. Zbl 0489.20022.
  2. ^ Sunada, Toshikazu (1989). "Unitary representations of fundamental groups and the spectrum of twisted Laplacians". Topology. 28 (2): 125–132. doi:10.1016/0040-9383(89)90015-3.
  3. ^ Brooks, Robert (1981). "The fundamental group and the spectrum of the Laplacian". Comment. Math. Helv. 56: 581–598. doi:10.1007/bf02566228.

Read other articles:

San Donato Milanesecomune San Donato Milanese – VedutaVeduta LocalizzazioneStato Italia Regione Lombardia Città metropolitana Milano AmministrazioneSindacoFrancesco Squeri (lista civica di centro-sinistra) dal 27-6-2022 TerritorioCoordinate45°25′N 9°16′E / 45.416667°N 9.266667°E45.416667; 9.266667 (San Donato Milanese)Coordinate: 45°25′N 9°16′E / 45.416667°N 9.266667°E45.416667; 9.266667 (San Donato Milanese) Al...

 

Halaman ini berisi artikel tentang Ci Mandiri (sungai) di Kabupaten Sukabumi. Untuk Cimandiri (sesar) patahan geser aktif, lihat Patahan Cimandiri. Ci Mandiri dan Cimandiri dialihkan ke halaman ini. Untuk kegunaan lain, lihat Ci Mandiri (disambiguasi). Ci MandiriSungai Cimandiri, Tji Mandiri, Tjimandiri, TjimandirMuara sungai Cimandiri pada Teluk Pelabuhan Ratu (1920-1940)Lokasi mulut sungaiTampilkan peta JawaCi Mandiri (Indonesia)Tampilkan peta IndonesiaLokasiNegara IndonesiaProvinsiJaw...

 

نادي القرداحة الاسم الكامل نادي القرداحة الرياضي تأسس عام 1981 الملعب ملعب القرداحة(السعة: 10,000) البلد سوريا  تعديل مصدري - تعديل   نادي القرداحة الرياضي هو نادي كرة قدم سوري من مدينة القرداحة في محافظة اللاذقية. تم تأسيس النادي عام 1981. يلعب مبارياته على ملعب القرداحة. تمك...

Dassault AviationJenisPrivate, Dassault Group & EADS FranceIndustriAerospace & DefenceDidirikan1929KantorpusatParis, FranceTokohkunciEric Trappier (Chairman and CEO)Serge Dassault (Honorary Chairman)ProdukCivil aircraftMilitary aircraftPendapatan€4.808 billion EUR (2017)Laba bersih€489 million EUR (2017)Karyawan11,398 (2017)Situs webhttp://www.dassault-aviation.com Dassault-Breguet/Dornier Alpha Jet of the UK defence technology organisation QinetiQ Dassault Aviation merupakan sebu...

 

У этого термина существуют и другие значения, см. Бенгальский тигр (значения). Группа животных Название Бенгальский тигр Статус названия Устаревшее таксономическое Научное название Panthera tigris tigris (Linnaeus, 1758)[устаревшая концепция] Родительский таксон Вид Тигр (Panthera tigris)П...

 

Disambiguazione – Dürrenmatt rimanda qui. Se stai cercando altri significati, vedi Dürrenmatt (disambigua). Friedrich Dürrenmatt Friedrich Dürrenmatt (Stalden im Emmental, 5 gennaio 1921 – Neuchâtel, 14 dicembre 1990) è stato uno scrittore, drammaturgo e pittore svizzero. Indice 1 Biografia 2 I temi e il pensiero 3 La pittura 4 Opere 4.1 Opere teatrali 4.2 Romanzi 4.3 Racconti e romanzi brevi 4.4 Radiodrammi 4.5 Saggi 4.6 Altro 5 Adattamenti cinematografici e televisivi 6 C...

High school in Reston, Virginia, United StatesSouth Lakes High SchoolAddress11400 South Lakes DriveReston, Virginia 20191United StatesInformationSchool typePublic, high schoolMottoVeritas in Scientia(Truth in Knowledge)Founded1978; 46 years ago (1978)School districtFairfax County Public SchoolsPrincipalKimberly RetzerStaff192.31 (on an FTE basis) (2021–22)[1]Grades9–12[1]Enrollment2,565 (2021–22)[1]Student to teacher ratio13.32 (2021–22)[...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Kodepos di Austria Format Kodepos di Austria mencakup empat digit. Bagian pertama menandai sebuah area pengiriman geografis di Austria. Bagian kedia menandai sebuah area penjaluran. Bagian ketika menandai rute surat dengan mobil/truk atau kereta api. Bagian keempat adalah kota penjaluran. Di Wina, digit kedua dan ketiga menandai distrik di kota itu (contohnya 1000: Distrik ke-10 – Favoriten). Area pengiriman geografis Area pengiriman geografis kadang-kadang memiliki kesamaan dengan negara b...

Etelka Gerster Etelka Gerster (Košice, 25 giugno 1857 – Pontecchio, 20 agosto 1920) è stata un soprano ungherese. Etelka Gerster nacque a Košice (comitato di Abaúj-Torna del Regno d'Ungheria, attualmente in Slovacchia) nel 1855. Suo zio, il capitano Anton Gerster, combatté nella guerra civile americana; suo fratello, Árpád Geyza Gerster (1848-1923), divenne un celebre chirurgo. Studiò al conservatorio di Vienna con Mathilde Marchesi e debuttò alla Fenice di Venezia nel 1876 come Gi...

 

مجسم للهيم ب (Heme B) نموذج الكرة والعصا للهيم B الهيم (Heme) هو جزيء مبدئي لتكوين الهيموجلوبين ، وهو ضروري لربط الأكسجين في مجرى الدم. يعطي اللون الأحمر لخضاب الدم وذلك لاحتوائه على ذرة الحديد. يتم تصنيع الهيم حيوياً في كل من نخاع العظام والكبد.[1][2][3] من بين الميتالوبو...

 

Artikel ini bukan mengenai Jalan Tol Jakarta–Cikampek II. Jalan Layang Syeikh Mohammed bin ZayedJalan Tol Layang Jakarta-CikampekInformasi ruteBagian dari Jalan Tol Trans-JawaDikelola oleh PT Jasamarga Jalanlayang Cikampek (JJC) (Jasa Marga, Nusantara Infrasturcture, dan Ranggi Sugiron Perkasa (20%))Panjang:36.84 km (22,89 mi)Berdiri:12 Desember 2019; 4 tahun lalu (2019-12-12) – sekarangSejarah:Dibangun tahun 2017-2019Persimpangan besarUjung barat: Jalan Tol Lingkar Luar Jak...

Performance arts rooted in Hindu musical theatre An illustration of the Manipuri Raas Leela Dance (Meitei: Jagoi Raas, Raas Jagoi), one of the officially recognised classical dance forms of India, depicted on a postage stamp from Armenia. Indian classical dance, or Shastriya Nritya, is an umbrella term for different regionally-specific Indian classical dance traditions, rooted in predominantly Hindu musical theatre performance,[1][2][3] the theory and practice of which...

 

American politician (born 1972) Rob BontaOfficial portrait, 202334th Attorney General of CaliforniaIncumbentAssumed office April 23, 2021GovernorGavin NewsomPreceded byXavier BecerraMember of the California State Assemblyfrom the 18th districtIn officeDecember 3, 2012 – April 22, 2021Preceded byMary HayashiSucceeded byMia BontaMember of the Alameda City CouncilIn officeDecember 21, 2010 – November 20, 2012Preceded byFrank MatarreseSucceeded byMarilyn Ezzy Ashcraft Pe...

 

Bolognese jurist and writer on agriculture (1233–1320) For other people named Pier Crescenzi, see Pier Crescenzi. Nineteenth-century engraved portrait of de' Crescenzi after Antonio MuzziBornc. 1230/35BolognaDiedc. 1320BolognaResting placeBasilica di San Domenico, BolognaOccupationjurist, writerLanguageItalian, LatinCitizenshipBologneseNotable worksRuralia commodaSpouseGeraldina de' CastagnoliAntonia de' Nascentori Frontispiece of the De agricultura in the vernacular edition of Matteo Capca...

Questa voce o sezione sugli argomenti nobiltà e diritto non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce o sezione sugli argomenti nobiltà e diritto non è ancora formattata secondo gli standard. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del pro...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 顔 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2011年3月) この項目では、頭部の正面について説明しています。そ�...

 

Pour les articles homonymes, voir Éperluette. Pour le disque d'Ayumi Hamasaki, voir & (album d'Ayumi Hamasaki). Pour le disque de Julien Doré, voir & (album). L’esperluette ou esperluète (nom féminin), également appelée éperluette, perluette, perluète, « et » commercial ou « et » américain — en anglais : ampersand —, désigne le logogramme &. Elle résulte de la ligature des lettres de la conjonction de coordination « et...

Henri Bohic, in latino Henricus Bohicus[1] (Plougonvelin, 1310 circa – Parigi, dopo il 1357), è stato un giurista francese. Fu giureconsulto, decretalista e canonista; il suo trattato In quinque decretalium libros commentaria rimase il manuale della facoltà di diritto di Parigi fino al 1679. Fu consigliere del duca Giovanni V di Bretagna (1339-1399).[2] In quinque decretalium libros commentaria, edizione del 1576 Indice 1 Biografia 2 Pensiero 3 Intitolazioni 4 Opere 5...

 

Amanuel GhebreigzabhierAmanuel Ghebreigzabhier lors du prologue du Tour de Romandie 2018.InformationsNom de naissance Amanuel Ghebreigzabhier Egerzeigzaarhka WerkilulNaissance 17 août 1994 (30 ans)Addis-AbebaNationalité érythréenneÉquipe actuelle Lidl-TrekÉquipes amateurs 2012-2015AS.BE.CO2016-2017Dimension Data-QhubekaÉquipes professionnelles 08.2016-12.2016Dimension Data (stagiaire)08.2017-12.2017Dimension Data (stagiaire)2018-2019Dimension Data 2020NTT Pro Cycling2021-Trek-Sega...