Fatou's lemma

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

Fatou's lemma can be used to prove the Fatou–Lebesgue theorem and Lebesgue's dominated convergence theorem.

Standard statement

In what follows, denotes the -algebra of Borel sets on .

Theorem — Fatou's lemma. Given a measure space and a set let be a sequence of -measurable non-negative functions . Define the function by for every . Then is -measurable, and

where the integrals and the Limit inferior may be infinite.

Fatou's lemma remains true if its assumptions hold -almost everywhere. In other words, it is enough that there is a null set such that the values are non-negative for every To see this, note that the integrals appearing in Fatou's lemma are unchanged if we change each function on .

Proof

Fatou's lemma does not require the monotone convergence theorem, but the latter can be used to provide a quick and natural proof. A proof directly from the definitions of integrals is given further below.

Via the Monotone Convergence Theorem

let . Then:

  1. the sequence is pointwise non-decreasing at any x and
  2. , .

Since

,

and infima and suprema of measurable functions are measurable we see that is measurable.

By the Monotone Convergence Theorem and property (1), the sup and integral may be interchanged:

where the last step used property (2).

From "first principles"

To demonstrate that the monotone convergence theorem is not "hidden", the proof below does not use any properties of Lebesgue integral except those established here and the fact that the functions and are measurable.

Denote by the set of simple -measurable functions such that on .

Monotonicity — 

  • If everywhere on then
  • If and then
  • If f is nonnegative and , where is a non-decreasing chain of -measurable sets, then
Proof

1. Since we have

By definition of Lebesgue integral and the properties of supremum,

2. Let be the indicator function of the set It can be deduced from the definition of Lebesgue integral that

if we notice that, for every outside of Combined with the previous property, the inequality implies

3. First note that the claim holds if f is the indicator function of a set, by monotonicity of measures. By linearity, this also immediately implies the claim for simple functions.

Since any simple function supported on Sn is simple and supported on X, we must have

.

For the reverse, suppose g ∈ SF(f) with By the above,

Now we turn to the main theorem

Step 1 —  is -measurable, for every , as is .

Proof

Recall the closed intervals generate the Borel σ-algebra. Thus it suffices to show, for every , that . Now observe that

Every set on the right-hand side is from , which is closed under countable intersections. Thus the left-hand side is also a member of .

Similarly, it is enough to verify that , for every . Since the sequence pointwise non-decreases,

.

Step 2 — Given a simple function and a real number , define

Then , , and .

Proof

Step 2a. To prove the first claim, write s as a weighted sum of indicator functions of disjoint sets:

.

Then

.

Since the pre-image of the Borel set under the measurable function is measurable, and -algebras are closed under finite intersection and unions, the first claim follows.

Step 2b. To prove the second claim, note that, for each and every ,

Step 2c. To prove the third claim, suppose for contradiction there exists

Then , for every . Taking the limit as ,

This contradicts our initial assumption that .

Step 3 — From step 2 and monotonicity,

Step 4 — For every ,

.
Proof

Indeed, using the definition of , the non-negativity of , and the monotonicity of Lebesgue integral, we have

.

In accordance with Step 4, as the inequality becomes

.

Taking the limit as yields

,

as required.

Step 5 — To complete the proof, we apply the definition of Lebesgue integral to the inequality established in Step 4 and take into account that :

The proof is complete.

Examples for strict inequality

Equip the space with the Borel σ-algebra and the Lebesgue measure.

These sequences converge on pointwise (respectively uniformly) to the zero function (with zero integral), but every has integral one.

The role of non-negativity

A suitable assumption concerning the negative parts of the sequence f1, f2, . . . of functions is necessary for Fatou's lemma, as the following example shows. Let S denote the half line [0,∞) with the Borel σ-algebra and the Lebesgue measure. For every natural number n define

This sequence converges uniformly on S to the zero function and the limit, 0, is reached in a finite number of steps: for every x ≥ 0, if n > x, then fn(x) = 0. However, every function fn has integral −1. Contrary to Fatou's lemma, this value is strictly less than the integral of the limit (0).

As discussed in § Extensions and variations of Fatou's lemma below, the problem is that there is no uniform integrable bound on the sequence from below, while 0 is the uniform bound from above.

Reverse Fatou lemma

Let f1, f2, . . . be a sequence of extended real-valued measurable functions defined on a measure space (S,Σ,μ). If there exists a non-negative integrable function g on S such that fn ≤ g for all n, then

Note: Here g integrable means that g is measurable and that .

Sketch of proof

We apply linearity of Lebesgue integral and Fatou's lemma to the sequence Since this sequence is defined -almost everywhere and non-negative.


Extensions and variations of Fatou's lemma

Integrable lower bound

Let be a sequence of extended real-valued measurable functions defined on a measure space . If there exists an integrable function on such that for all , then

Proof

Apply Fatou's lemma to the non-negative sequence given by .

Pointwise convergence

If in the previous setting the sequence converges pointwise to a function -almost everywhere on , then

Proof

Note that has to agree with the limit inferior of the functions almost everywhere, and that the values of the integrand on a set of measure zero have no influence on the value of the integral.

Convergence in measure

The last assertion also holds, if the sequence converges in measure to a function .

Proof

There exists a subsequence such that

Since this subsequence also converges in measure to , there exists a further subsequence, which converges pointwise to almost everywhere, hence the previous variation of Fatou's lemma is applicable to this subsubsequence.

Fatou's Lemma with Varying Measures

In all of the above statements of Fatou's Lemma, the integration was carried out with respect to a single fixed measure . Suppose that is a sequence of measures on the measurable space such that (see Convergence of measures)

.

Then, with non-negative integrable functions and being their pointwise limit inferior, we have

Fatou's lemma for conditional expectations

In probability theory, by a change of notation, the above versions of Fatou's lemma are applicable to sequences of random variables X1, X2, . . . defined on a probability space ; the integrals turn into expectations. In addition, there is also a version for conditional expectations.

Standard version

Let X1, X2, . . . be a sequence of non-negative random variables on a probability space and let be a sub-σ-algebra. Then

   almost surely.

Note: Conditional expectation for non-negative random variables is always well defined, finite expectation is not needed.

Proof

Besides a change of notation, the proof is very similar to the one for the standard version of Fatou's lemma above, however the monotone convergence theorem for conditional expectations has to be applied.

Let X denote the limit inferior of the Xn. For every natural number k define pointwise the random variable

Then the sequence Y1, Y2, . . . is increasing and converges pointwise to X. For k ≤ n, we have Yk ≤ Xn, so that

   almost surely

by the monotonicity of conditional expectation, hence

   almost surely,

because the countable union of the exceptional sets of probability zero is again a null set. Using the definition of X, its representation as pointwise limit of the Yk, the monotone convergence theorem for conditional expectations, the last inequality, and the definition of the limit inferior, it follows that almost surely

Extension to uniformly integrable negative parts

Let X1, X2, . . . be a sequence of random variables on a probability space and let be a sub-σ-algebra. If the negative parts

are uniformly integrable with respect to the conditional expectation, in the sense that, for ε > 0 there exists a c > 0 such that

,

then

   almost surely.

Note: On the set where

satisfies

the left-hand side of the inequality is considered to be plus infinity. The conditional expectation of the limit inferior might not be well defined on this set, because the conditional expectation of the negative part might also be plus infinity.

Proof

Let ε > 0. Due to uniform integrability with respect to the conditional expectation, there exists a c > 0 such that

Since

where x+ := max{x,0} denotes the positive part of a real x, monotonicity of conditional expectation (or the above convention) and the standard version of Fatou's lemma for conditional expectations imply

   almost surely.

Since

we have

   almost surely,

hence

   almost surely.

This implies the assertion.

References

  • Carothers, N. L. (2000). Real Analysis. New York: Cambridge University Press. pp. 321–22. ISBN 0-521-49756-6.
  • Royden, H. L. (1988). Real Analysis (3rd ed.). London: Collier Macmillan. ISBN 0-02-404151-3.
  • Weir, Alan J. (1973). "The Convergence Theorems". Lebesgue Integration and Measure. Cambridge: Cambridge University Press. pp. 93–118. ISBN 0-521-08728-7.

Read other articles:

Provinsi Spania. Spania (Latin: Provincia Spaniaecode: la is deprecated ) adalah provinsi Kekaisaran Bizantium dari tahun 552 hinggal 624[1] di Kepulauan Balearik dan sebelah selatan Semenanjung Iberia. Provinsi ini merupakan salah satu dari wilayah bekas Romawi Barat yang berhasil direbut kembali oleh Kaisar Romawi Timur (Bizantium) Yustinianus I dalam usahanya untuk menaklukan kembali wilayah Romawi Barat yang hilang. Pada tahun 624, provinsi ini berhasil direbut kembali oleh Visigo...

 

 

Artikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus konten yang dianggap sebagai spam dan pranala luar yang tidak sesuai, dan tambahkan konten ensiklopedis yang ditulis dari sudut pandang netral dan sesuai dengan kebijakan Wikipedia. (Juni 2019) Griya Perenungan (Jing Si Tang) Yayasan Tzu-Chi di Taiwan, berdampingan dengan rumah sakit di sebelah kanan. Yayasan Kemanusiaan Buddha Tzu Chi (Hanyu Pinyin: Cí Jì, Wade-Giles: Tz'u Chi...

 

 

Kylix buatan Euergides (sirka 500 SM) di British Museum, London. Kylix adalah sejenis alat minum anggur yang bentuknya lebar tetapi dangkal dan memiki kaki di bawahnya serta dua pegangan di bagian pinggirnya. Bagian lingkaran interiornya yang hampir datar disebut tondo dan sering kali dihiasi dengan dekorasi figur hitam atau figur merah pada abad ke-6 dan ke-5 SM. Wikimedia Commons memiliki media mengenai Kylixes.

American Indoor Football team Chesapeake TideEstablished 2006Folded 2008Played in Upper Marlboro, Marylandat The Show Place Arena League/conference affiliationsContinental Indoor Football League (2007–2008) Atlantic Division (2007) Atlantic Conference (2008) Eastern Division (2008) Current uniformTeam colorsNavy, White    MascotCaptain Rip TideCheerleadersTidal Wave Dance TeamPersonnelOwner(s)Martin Johnson (2006–2008)Messay Hailermariam (2008)Head coachMatthew SteepleTeam histo...

 

 

Keuskupan Vittorio VenetoDioecesis Victoriensis VenetorumKatolik Katedral Vittorio VenetoLokasiNegaraItaliaProvinsi gerejawiVenesiaStatistikLuas1.420 km2 (550 sq mi)Populasi- Total- Katolik(per 2010)364.870335,500 (92%)Paroki162InformasiDenominasiGereja KatolikRitusRitus RomaPendirianAbad ke-6KatedralCattedrale di S. Maria AssuntaKepemimpinan kiniPausFransiskusUskupCorrado PizzioloEmeritusAlfredo MagarottoPetaSitus webwww.diocesivittorioveneto.it Keuskupan V...

 

 

Former synagogue in Voŭpa, Belarus Wołpa SynagogueThe former Wolpa Synagogue, 1920, Second Polish RepublicReligionAffiliationJudaism (former)Ecclesiastical or organisational statusSynagogue (–1940s)StatusDestroyedLocationLocationVoŭpaCountryBelarusThe former synagogue in what is now BelarusGeographic coordinates53°21′52″N 24°21′57″E / 53.3644°N 24.3657°E / 53.3644; 24.3657ArchitectureTypeSynagogue architectureStyleVernacularCompletedc. 1643De...

Halaman ini berisi artikel tentang film 1954. Untuk film 1996, lihat Andha Naal (film 1996). Andha NaalSutradaraS. BalachanderProduserA. V. MeiyappanSkenarioJavar SeetharamanCeritaS. BalachanderPemeranSivaji GanesanPandari BaiJavar SeetharamanPenata musikSaraswathy Stores OrchestraSinematograferS. Maruti RaoPenyuntingS. SuryaPerusahaanproduksiAVM ProductionsTanggal rilis13 April 1954 (13 April 1954)Durasi130 menit[1]NegaraIndiaBahasaTamil Andha Naal (Inggris: That Day, ...

 

 

David GoffinGoffin di AS Terbuka 2016Kebangsaan BelgiaTempat tinggalMonte Carlo, MonakoLahir07 Desember 1990 (umur 33)Rocourt, BelgiaTinggi180 m (590 ft 6+1⁄2 in)Total hadiahUS$ 5.839.962TunggalRekor (M–K)159–111 (58.89%)Gelar2Peringkat tertinggiNo. 10 (20 Februari 2017)Peringkat saat iniNo. 14 (3 April 2017)GandaRekor (M–K)3–19Gelar0Peringkat tertinggiNo. 249 (9 Mei 2016)Peringkat saat iniNo. - (3 April 2017)Statistik terbaru dimutakhir pada 3 April 201...

 

 

Teluk SemangkaLetakAsia TenggaraJenis perairanTelukTerletak di negaraIndonesiaReferensiTeluk Semangka: Indonesia National Geospatial-Intelligence Agency, Bethesda, MD, USA Teluk Semangka adalah teluk besar yang berada di ujung selatan Pulau Sumatra. Di ujung selatan Sumatra terdapat dua teluk besar, Teluk Semangka adalah yang terletak di bagian barat. Di sisi timur teluk ini membentang Kabupaten Tanggamus, dengan ibu kota Kotaagung yang berada di ujung utara teluk ini. Artikel bertopik geogra...

MRPL23 التراكيب المتوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 3J7Y, 3J9M المعرفات الأسماء المستعارة MRPL23, L23MRP, RPL23, RPL23L, mitochondrial ribosomal protein L23 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 600789 MGI: MGI:1196612 HomoloGene: 7922 GeneCards: 6150 علم الوجود الجيني الو...

 

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gavia Pass – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this message) Gavia PassThe passElevation2,621 m (8,599 ft)Traversed bySS 300LocationSondrio/Brescia, ItalyCoordinates46°20′37″N 10°29′15″E / 46.34361°N...

 

 

فرنسيس مرّاش معلومات شخصية اسم الولادة فرنسيس بن فتح الله بن نصر الله مرّاش الميلاد 29 يونيو 1836 [1][2]  حلب[2]  الوفاة سنة 1874 [3][4]  حلب  مواطنة الدولة العثمانية (1867–1874)  إخوة وأخوات عبد الله مراش،  ومريانا مراش  الحياة العملية الحركة الأدبي�...

33-я добровольческая пехотная дивизия СС «Шарлемань» (1-я французская) Символика дивизии Годы существования 1944—1945, дивизия с 10 февраля 1945 года Страна  Германия Подчинение Войска СС Входит в коллаборационизм во Франции[d] Тип пехотная дивизия Функция пехота Численнос...

 

 

Géographie de Mayotte Continent Afrique Région Région française d'outre-mer Coordonnées 12° 50′ S, 45° 10′ E Superficie 182e rang mondial374 km2Terres :  % Eau :  % Côtes 185,2 km Frontières aucune (territoire insulaire) Altitude maximale Mont Bénara (660 m) Altitude minimale Océan Indien (0 m) modifier  Mayotte est un département et une région d’outre-mer français situé dans l’océan Indien[1], composé ...

 

 

American TV series or program Camp CandyGenreAnimated seriesCreated byJoel AndrycEllen LevyPhil HarnageDeveloped byJohn CandyJack MendelsohnScott ShawPhil HarnageDirected byScott Shaw (season 1)Dan Thompson (season 2)Winston Richard (season 3)Animation Directors:Robert Alvarez (Season 1)StarringJohn CandyVoices ofTony AilLewis ArquetteValri BromfieldE.G. DailyTom DavidsonDanielle FernandesBrian GeorgeWillow JohnsonGeorge MacPhersonDanny MannGail MatthiusCandi MiloAndrew SeebaranCree SummerCh...

For other people named John Lowell, see John Lowell (disambiguation). American judge (1743–1802) John LowellChief Judge of the United States Circuit Court for the First CircuitIn officeFebruary 20, 1801 – May 6, 1802Appointed byJohn AdamsPreceded bySeat established by 2 Stat. 89Succeeded bySeat abolishedJudge of the United States District Court for the District of MassachusettsIn officeSeptember 26, 1789 – February 20, 1801Appointed byGeorge WashingtonPreceded bySeat e...

 

 

American politician This article is about the former Massachusetts State Representative and Secretary of the Commonwealth. For incumbent Massachusetts State Representative, see Mike Connolly (Massachusetts politician). Michael Joseph Connolly26th Secretary of the Commonwealth of MassachusettsIn office1979–1994GovernorEdward J. KingMichael DukakisBill WeldPreceded byPaul H. GuzziSucceeded byWilliam F. GalvinMember of theMassachusetts House of Representatives[1]In office1973[1]...

 

 

City in Syria City in Aleppo, SyriaKobanîCityAyn al-Arab عَيْن الْعَرَبView of Kobanî during the siege in 2014KobanîLocation in SyriaCoordinates: 36°53′28″N 38°21′13″E / 36.8910278°N 38.3536111°E / 36.8910278; 38.3536111Country SyriaGovernorateAleppoDistrictAyn al-ArabSubdistrictAyn al-ArabFounded1915Area • City7 km2 (3 sq mi)Elevation520 m (1,710 ft)Population (2004 census, unless stated otherw...

Ice hockey governing body in Norway NorwayAssociation nameNorges IshockeyforbundIIHF CodeNORFounded18 September 1934 (1934-09-18)IIHF membership20 January 1935PresidentTage PettersenIIHF men's ranking12 (27 May 2024)[1]IIHF women's ranking15 2 (28 August 2023)[2]http://www.hockey.no The Norwegian Ice Hockey Association (in Norwegian, Norges Ishockeyforbund (NIHF) is the governing body of all ice hockey, sledge hockey and in-line hockey in Norway. NIHF has its of...

 

 

Painting by Caravaggio The Taking of ChristItalian: Cattura di Cristo nell' ortoArtistCaravaggioYearc. 1602Mediumoil on canvasDimensions133.5 cm × 169.5 cm (52.6 in × 66.7 in)LocationNational Gallery of Ireland On loan from the Society of Jesus, Leeson Street., Dublin The Taking of Christ (Italian: Presa di Cristo nell'orto or Cattura di Cristo) is a painting, of the arrest of Jesus, by the Italian Baroque master Michelangelo Merisi da Caravaggio. O...