In what follows, denotes the -algebra of Borel sets on .
Theorem — Fatou's lemma. Given a measure space and a set let be a sequence of -measurable non-negative functions . Define the function by for every . Then is -measurable, and
Fatou's lemma remains true if its assumptions hold -almost everywhere. In other words, it is enough that there is a null set such that the values are non-negative for every To see this, note that the integrals appearing in Fatou's lemma are unchanged if we change each function on .
Proof
Fatou's lemma does not require the monotone convergence theorem, but the latter can be used to provide a quick and natural proof. A proof directly from the definitions of integrals is given further below.
Via the Monotone Convergence Theorem
let . Then:
the sequence is pointwise non-decreasing at any x and
By the Monotone Convergence Theorem and property (1), the sup and integral may be interchanged:
where the last step used property (2).
From "first principles"
To demonstrate that the monotone convergence theorem is not "hidden", the proof below does not use any properties of Lebesgue integral except those established here and the fact that the functions and are measurable.
Denote by the set of simple-measurable functions such that on .
Monotonicity —
If everywhere on then
If and then
If f is nonnegative and , where is a non-decreasing chain of -measurable sets, then
Proof
1. Since we have
By definition of Lebesgue integral and the properties of supremum,
2. Let be the indicator function of the set It can be deduced from the definition of Lebesgue integral that
if we notice that, for every outside of Combined with the previous property, the inequality implies
3. First note that the claim holds if f is the indicator function of a set, by monotonicity of measures. By linearity, this also immediately implies the claim for simple functions.
Since any simple function supported on Sn is simple and supported on X, we must have
.
For the reverse, suppose g ∈ SF(f) with By the above,
Now we turn to the main theorem
Step 1 — is -measurable, for every , as is .
Proof
Recall the closed intervals generate the Borelσ-algebra. Thus it suffices to show, for every , that . Now observe that
Every set on the right-hand side is from , which is closed under countable intersections. Thus the left-hand side is also a member of .
Similarly, it is enough to verify that , for every . Since the sequence pointwise non-decreases,
.
Step 2 — Given a simple function and a real number , define
Since the pre-image of the Borel set under the measurable function is measurable, and -algebras are closed under finite intersection and unions, the first claim follows.
Step 2b. To prove the second claim, note that, for each and every ,
Step 2c. To prove the third claim, suppose for contradiction there exists
Then , for every . Taking the limit as ,
This contradicts our initial assumption that .
Step 3 — From step 2 and monotonicity,
Step 4 — For every ,
.
Proof
Indeed, using the definition of , the non-negativity of , and the monotonicity of Lebesgue integral, we have
.
In accordance with Step 4, as the inequality becomes
.
Taking the limit as yields
,
as required.
Step 5 — To complete the proof, we apply the definition of Lebesgue integral to the inequality established in Step 4 and take into account that :
These sequences converge on pointwise (respectively uniformly) to the zero function (with zero integral), but every has integral one.
The role of non-negativity
A suitable assumption concerning the negative parts of the sequence f1, f2, . . . of functions is necessary for Fatou's lemma, as the following example shows. Let S denote the half line [0,∞) with the Borel σ-algebra and the Lebesgue measure. For every natural number n define
This sequence converges uniformly on S to the zero function and the limit, 0, is reached in a finite number of steps: for every x ≥ 0, if n > x, then fn(x) = 0. However, every function fn has integral −1. Contrary to Fatou's lemma, this value is strictly less than the integral of the limit (0).
As discussed in § Extensions and variations of Fatou's lemma below, the problem is that there is no uniform integrable bound on the sequence from below, while 0 is the uniform bound from above.
Reverse Fatou lemma
Let f1, f2, . . . be a sequence of extended real-valued measurable functions defined on a measure space (S,Σ,μ). If there exists a non-negative integrable function g on S such that fn ≤ g for all n, then
Note: Here g integrable means that g is measurable and that .
Sketch of proof
We apply linearity of Lebesgue integral and Fatou's lemma to the sequence Since this sequence is defined -almost everywhere and non-negative.
Extensions and variations of Fatou's lemma
Integrable lower bound
Let be a sequence of extended real-valued measurable functions defined on a measure space . If there exists an integrable function on such that for all , then
Proof
Apply Fatou's lemma to the non-negative sequence given by .
Note that has to agree with the limit inferior of the functions almost everywhere, and that the values of the integrand on a set of measure zero have no influence on the value of the integral.
Convergence in measure
The last assertion also holds, if the sequence converges in measure to a function .
Proof
There exists a subsequence such that
Since this subsequence also converges in measure to , there exists a further subsequence, which converges pointwise to almost everywhere, hence the previous variation of Fatou's lemma is applicable to this subsubsequence.
Fatou's Lemma with Varying Measures
In all of the above statements of Fatou's Lemma, the integration was carried out with respect to a single fixed measure . Suppose that is a sequence of measures on the measurable space such that (see Convergence of measures)
.
Then, with non-negative integrable functions and being their pointwise limit inferior, we have
Proof
We will prove something a bit stronger here. Namely, we will allow to converge -almost everywhere on a subset of . We seek to show that
Let
.
Then μ(E-K)=0 and
Thus, replacing by we may assume that converge to pointwise on . Next, note that for any simple function we have
Hence, by the definition of the Lebesgue Integral, it is enough to show that if is any non-negative simple function less than or equal to , then
Let a be the minimum non-negative value of φ. Define
We first consider the case when .
We must have that is infinite since
where M is the (necessarily finite) maximum value of that attains.
Next, we define
We have that
But is a nested increasing sequence of functions and hence, by the continuity from below ,
.
Thus,
.
At the same time,
proving the claim in this case.
The remaining case is when . We must have that is finite. Denote, as above, by the maximum value of and fix Define
Then An is a nested increasing sequence of sets whose union contains . Thus, is a decreasing sequence of sets with empty intersection. Since has finite measure (this is why we needed to consider the two separate cases),
Thus, there exists n such that
Therefore, since
there exists N such that
Hence, for
At the same time,
Hence,
Combining these inequalities gives that
Hence, sending to 0 and taking the liminf in , we get that
because the countable union of the exceptional sets of probability zero is again a null set.
Using the definition of X, its representation as pointwise limit of the Yk, the monotone convergence theorem for conditional expectations, the last inequality, and the definition of the limit inferior, it follows that almost surely
Extension to uniformly integrable negative parts
Let X1, X2, . . . be a sequence of random variables on a probability space and let
be a sub-σ-algebra. If the negative parts
are uniformly integrable with respect to the conditional expectation, in the sense that, for ε > 0 there exists a c > 0 such that
,
then
almost surely.
Note: On the set where
satisfies
the left-hand side of the inequality is considered to be plus infinity. The conditional expectation of the limit inferior might not be well defined on this set, because the conditional expectation of the negative part might also be plus infinity.
Proof
Let ε > 0. Due to uniform integrability with respect to the conditional expectation, there exists a c > 0 such that
Since
where x+ := max{x,0} denotes the positive part of a real x, monotonicity of conditional expectation (or the above convention) and the standard version of Fatou's lemma for conditional expectations imply
Royden, H. L. (1988). Real Analysis (3rd ed.). London: Collier Macmillan. ISBN0-02-404151-3.
Weir, Alan J. (1973). "The Convergence Theorems". Lebesgue Integration and Measure. Cambridge: Cambridge University Press. pp. 93–118. ISBN0-521-08728-7.
Provinsi Spania. Spania (Latin: Provincia Spaniaecode: la is deprecated ) adalah provinsi Kekaisaran Bizantium dari tahun 552 hinggal 624[1] di Kepulauan Balearik dan sebelah selatan Semenanjung Iberia. Provinsi ini merupakan salah satu dari wilayah bekas Romawi Barat yang berhasil direbut kembali oleh Kaisar Romawi Timur (Bizantium) Yustinianus I dalam usahanya untuk menaklukan kembali wilayah Romawi Barat yang hilang. Pada tahun 624, provinsi ini berhasil direbut kembali oleh Visigo...
Artikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus konten yang dianggap sebagai spam dan pranala luar yang tidak sesuai, dan tambahkan konten ensiklopedis yang ditulis dari sudut pandang netral dan sesuai dengan kebijakan Wikipedia. (Juni 2019) Griya Perenungan (Jing Si Tang) Yayasan Tzu-Chi di Taiwan, berdampingan dengan rumah sakit di sebelah kanan. Yayasan Kemanusiaan Buddha Tzu Chi (Hanyu Pinyin: Cí Jì, Wade-Giles: Tz'u Chi...
Kylix buatan Euergides (sirka 500 SM) di British Museum, London. Kylix adalah sejenis alat minum anggur yang bentuknya lebar tetapi dangkal dan memiki kaki di bawahnya serta dua pegangan di bagian pinggirnya. Bagian lingkaran interiornya yang hampir datar disebut tondo dan sering kali dihiasi dengan dekorasi figur hitam atau figur merah pada abad ke-6 dan ke-5 SM. Wikimedia Commons memiliki media mengenai Kylixes.
American Indoor Football team Chesapeake TideEstablished 2006Folded 2008Played in Upper Marlboro, Marylandat The Show Place Arena League/conference affiliationsContinental Indoor Football League (2007–2008) Atlantic Division (2007) Atlantic Conference (2008) Eastern Division (2008) Current uniformTeam colorsNavy, White MascotCaptain Rip TideCheerleadersTidal Wave Dance TeamPersonnelOwner(s)Martin Johnson (2006–2008)Messay Hailermariam (2008)Head coachMatthew SteepleTeam histo...
Former synagogue in Voŭpa, Belarus Wołpa SynagogueThe former Wolpa Synagogue, 1920, Second Polish RepublicReligionAffiliationJudaism (former)Ecclesiastical or organisational statusSynagogue (–1940s)StatusDestroyedLocationLocationVoŭpaCountryBelarusThe former synagogue in what is now BelarusGeographic coordinates53°21′52″N 24°21′57″E / 53.3644°N 24.3657°E / 53.3644; 24.3657ArchitectureTypeSynagogue architectureStyleVernacularCompletedc. 1643De...
Halaman ini berisi artikel tentang film 1954. Untuk film 1996, lihat Andha Naal (film 1996). Andha NaalSutradaraS. BalachanderProduserA. V. MeiyappanSkenarioJavar SeetharamanCeritaS. BalachanderPemeranSivaji GanesanPandari BaiJavar SeetharamanPenata musikSaraswathy Stores OrchestraSinematograferS. Maruti RaoPenyuntingS. SuryaPerusahaanproduksiAVM ProductionsTanggal rilis13 April 1954 (13 April 1954)Durasi130 menit[1]NegaraIndiaBahasaTamil Andha Naal (Inggris: That Day, ...
David GoffinGoffin di AS Terbuka 2016Kebangsaan BelgiaTempat tinggalMonte Carlo, MonakoLahir07 Desember 1990 (umur 33)Rocourt, BelgiaTinggi180 m (590 ft 6+1⁄2 in)Total hadiahUS$ 5.839.962TunggalRekor (M–K)159–111 (58.89%)Gelar2Peringkat tertinggiNo. 10 (20 Februari 2017)Peringkat saat iniNo. 14 (3 April 2017)GandaRekor (M–K)3–19Gelar0Peringkat tertinggiNo. 249 (9 Mei 2016)Peringkat saat iniNo. - (3 April 2017)Statistik terbaru dimutakhir pada 3 April 201...
Teluk SemangkaLetakAsia TenggaraJenis perairanTelukTerletak di negaraIndonesiaReferensiTeluk Semangka: Indonesia National Geospatial-Intelligence Agency, Bethesda, MD, USA Teluk Semangka adalah teluk besar yang berada di ujung selatan Pulau Sumatra. Di ujung selatan Sumatra terdapat dua teluk besar, Teluk Semangka adalah yang terletak di bagian barat. Di sisi timur teluk ini membentang Kabupaten Tanggamus, dengan ibu kota Kotaagung yang berada di ujung utara teluk ini. Artikel bertopik geogra...
MRPL23 التراكيب المتوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 3J7Y, 3J9M المعرفات الأسماء المستعارة MRPL23, L23MRP, RPL23, RPL23L, mitochondrial ribosomal protein L23 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 600789 MGI: MGI:1196612 HomoloGene: 7922 GeneCards: 6150 علم الوجود الجيني الو...
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gavia Pass – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this message) Gavia PassThe passElevation2,621 m (8,599 ft)Traversed bySS 300LocationSondrio/Brescia, ItalyCoordinates46°20′37″N 10°29′15″E / 46.34361°N...
فرنسيس مرّاش معلومات شخصية اسم الولادة فرنسيس بن فتح الله بن نصر الله مرّاش الميلاد 29 يونيو 1836 [1][2] حلب[2] الوفاة سنة 1874 [3][4] حلب مواطنة الدولة العثمانية (1867–1874) إخوة وأخوات عبد الله مراش، ومريانا مراش الحياة العملية الحركة الأدبي�...
33-я добровольческая пехотная дивизия СС «Шарлемань» (1-я французская) Символика дивизии Годы существования 1944—1945, дивизия с 10 февраля 1945 года Страна Германия Подчинение Войска СС Входит в коллаборационизм во Франции[d] Тип пехотная дивизия Функция пехота Численнос...
Géographie de Mayotte Continent Afrique Région Région française d'outre-mer Coordonnées 12° 50′ S, 45° 10′ E Superficie 182e rang mondial374 km2Terres : % Eau : % Côtes 185,2 km Frontières aucune (territoire insulaire) Altitude maximale Mont Bénara (660 m) Altitude minimale Océan Indien (0 m) modifier Mayotte est un département et une région d’outre-mer français situé dans l’océan Indien[1], composé ...
For other people named John Lowell, see John Lowell (disambiguation). American judge (1743–1802) John LowellChief Judge of the United States Circuit Court for the First CircuitIn officeFebruary 20, 1801 – May 6, 1802Appointed byJohn AdamsPreceded bySeat established by 2 Stat. 89Succeeded bySeat abolishedJudge of the United States District Court for the District of MassachusettsIn officeSeptember 26, 1789 – February 20, 1801Appointed byGeorge WashingtonPreceded bySeat e...
American politician This article is about the former Massachusetts State Representative and Secretary of the Commonwealth. For incumbent Massachusetts State Representative, see Mike Connolly (Massachusetts politician). Michael Joseph Connolly26th Secretary of the Commonwealth of MassachusettsIn office1979–1994GovernorEdward J. KingMichael DukakisBill WeldPreceded byPaul H. GuzziSucceeded byWilliam F. GalvinMember of theMassachusetts House of Representatives[1]In office1973[1]...
City in Syria City in Aleppo, SyriaKobanîCityAyn al-Arab عَيْن الْعَرَبView of Kobanî during the siege in 2014KobanîLocation in SyriaCoordinates: 36°53′28″N 38°21′13″E / 36.8910278°N 38.3536111°E / 36.8910278; 38.3536111Country SyriaGovernorateAleppoDistrictAyn al-ArabSubdistrictAyn al-ArabFounded1915Area • City7 km2 (3 sq mi)Elevation520 m (1,710 ft)Population (2004 census, unless stated otherw...
Ice hockey governing body in Norway NorwayAssociation nameNorges IshockeyforbundIIHF CodeNORFounded18 September 1934 (1934-09-18)IIHF membership20 January 1935PresidentTage PettersenIIHF men's ranking12 (27 May 2024)[1]IIHF women's ranking15 2 (28 August 2023)[2]http://www.hockey.no The Norwegian Ice Hockey Association (in Norwegian, Norges Ishockeyforbund (NIHF) is the governing body of all ice hockey, sledge hockey and in-line hockey in Norway. NIHF has its of...
Painting by Caravaggio The Taking of ChristItalian: Cattura di Cristo nell' ortoArtistCaravaggioYearc. 1602Mediumoil on canvasDimensions133.5 cm × 169.5 cm (52.6 in × 66.7 in)LocationNational Gallery of Ireland On loan from the Society of Jesus, Leeson Street., Dublin The Taking of Christ (Italian: Presa di Cristo nell'orto or Cattura di Cristo) is a painting, of the arrest of Jesus, by the Italian Baroque master Michelangelo Merisi da Caravaggio. O...