Epsilon number

In mathematics, the epsilon numbers are a collection of transfinite numbers whose defining property is that they are fixed points of an exponential map. Consequently, they are not reachable from 0 via a finite series of applications of the chosen exponential map and of "weaker" operations like addition and multiplication. The original epsilon numbers were introduced by Georg Cantor in the context of ordinal arithmetic; they are the ordinal numbers ε that satisfy the equation

in which ω is the smallest infinite ordinal.

The least such ordinal is ε0 (pronounced epsilon nought (chiefly British), epsilon naught (chiefly American), or epsilon zero), which can be viewed as the "limit" obtained by transfinite recursion from a sequence of smaller limit ordinals:

where sup is the supremum, which is equivalent to set union in the case of the von Neumann representation of ordinals.

Larger ordinal fixed points of the exponential map are indexed by ordinal subscripts, resulting in .[1] The ordinal ε0 is still countable, as is any epsilon number whose index is countable. Uncountable ordinals also exist, along with uncountable epsilon numbers whose index is an uncountable ordinal.

The smallest epsilon number ε0 appears in many induction proofs, because for many purposes transfinite induction is only required up to ε0 (as in Gentzen's consistency proof and the proof of Goodstein's theorem). Its use by Gentzen to prove the consistency of Peano arithmetic, along with Gödel's second incompleteness theorem, show that Peano arithmetic cannot prove the well-foundedness of this ordering (it is in fact the least ordinal with this property, and as such, in proof-theoretic ordinal analysis, is used as a measure of the strength of the theory of Peano arithmetic).

Many larger epsilon numbers can be defined using the Veblen function.

A more general class of epsilon numbers has been identified by John Horton Conway and Donald Knuth in the surreal number system, consisting of all surreals that are fixed points of the base ω exponential map xωx.

Hessenberg (1906) defined gamma numbers (see additively indecomposable ordinal) to be numbers γ > 0 such that α + γ = γ whenever α < γ, and delta numbers (see multiplicatively indecomposable ordinal) to be numbers δ > 1 such that αδ = δ whenever 0 < α < δ, and epsilon numbers to be numbers ε > 2 such that αε = ε whenever 1 < α < ε. His gamma numbers are those of the form ωβ, and his delta numbers are those of the form ωωβ.

Ordinal ε numbers

The standard definition of ordinal exponentiation with base α is:

  • when has an immediate predecessor .
  • , whenever is a limit ordinal.

From this definition, it follows that for any fixed ordinal α > 1, the mapping is a normal function, so it has arbitrarily large fixed points by the fixed-point lemma for normal functions. When , these fixed points are precisely the ordinal epsilon numbers.

  • when has an immediate predecessor .
  • , whenever is a limit ordinal.

Because

a different sequence with the same supremum, , is obtained by starting from 0 and exponentiating with base ε0 instead:

Generally, the epsilon number indexed by any ordinal that has an immediate predecessor can be constructed similarly.

In particular, whether or not the index β is a limit ordinal, is a fixed point not only of base ω exponentiation but also of base δ exponentiation for all ordinals .

Since the epsilon numbers are an unbounded subclass of the ordinal numbers, they are enumerated using the ordinal numbers themselves. For any ordinal number , is the least epsilon number (fixed point of the exponential map) not already in the set . It might appear that this is the non-constructive equivalent of the constructive definition using iterated exponentiation; but the two definitions are equally non-constructive at steps indexed by limit ordinals, which represent transfinite recursion of a higher order than taking the supremum of an exponential series.

The following facts about epsilon numbers are straightforward to prove:

  • Although it is quite a large number, is still countable, being a countable union of countable ordinals; in fact, is countable if and only if is countable.
  • The union (or supremum) of any non-empty set of epsilon numbers is an epsilon number; so for instance is an epsilon number. Thus, the mapping is a normal function.
  • The initial ordinal of any uncountable cardinal is an epsilon number.

Representation of ε0 by rooted trees

Any epsilon number ε has Cantor normal form , which means that the Cantor normal form is not very useful for epsilon numbers. The ordinals less than ε0, however, can be usefully described by their Cantor normal forms, which leads to a representation of ε0 as the ordered set of all finite rooted trees, as follows. Any ordinal has Cantor normal form where k is a natural number and are ordinals with , uniquely determined by . Each of the ordinals in turn has a similar Cantor normal form. We obtain the finite rooted tree representing α by joining the roots of the trees representing to a new root. (This has the consequence that the number 0 is represented by a single root while the number is represented by a tree containing a root and a single leaf.) An order on the set of finite rooted trees is defined recursively: we first order the subtrees joined to the root in decreasing order, and then use lexicographic order on these ordered sequences of subtrees. In this way the set of all finite rooted trees becomes a well-ordered set which is order isomorphic to ε0.

This representation is related to the proof of the hydra theorem, which represents decreasing sequences of ordinals as a graph-theoretic game.

Veblen hierarchy

The fixed points of the "epsilon mapping" form a normal function, whose fixed points form a normal function; this is known as the Veblen hierarchy (the Veblen functions with base φ0(α) = ωα). In the notation of the Veblen hierarchy, the epsilon mapping is φ1, and its fixed points are enumerated by φ2.

Continuing in this vein, one can define maps φα for progressively larger ordinals α (including, by this rarefied form of transfinite recursion, limit ordinals), with progressively larger least fixed points φα+1(0). The least ordinal not reachable from 0 by this procedure—i. e., the least ordinal α for which φα(0) = α, or equivalently the first fixed point of the map —is the Feferman–Schütte ordinal Γ0. In a set theory where such an ordinal can be proved to exist, one has a map Γ that enumerates the fixed points Γ0, Γ1, Γ2, ... of ; these are all still epsilon numbers, as they lie in the image of φβ for every β ≤ Γ0, including of the map φ1 that enumerates epsilon numbers.

Surreal ε numbers

In On Numbers and Games, the classic exposition on surreal numbers, John Horton Conway provided a number of examples of concepts that had natural extensions from the ordinals to the surreals. One such function is the -map ; this mapping generalises naturally to include all surreal numbers in its domain, which in turn provides a natural generalisation of the Cantor normal form for surreal numbers.

It is natural to consider any fixed point of this expanded map to be an epsilon number, whether or not it happens to be strictly an ordinal number. Some examples of non-ordinal epsilon numbers are

and

There is a natural way to define for every surreal number n, and the map remains order-preserving. Conway goes on to define a broader class of "irreducible" surreal numbers that includes the epsilon numbers as a particularly interesting subclass.

See also

References

  1. ^ Stephen G. Simpson, Subsystems of Second-order Arithmetic (2009, p.387)
  • J.H. Conway, On Numbers and Games (1976) Academic Press ISBN 0-12-186350-6
  • Section XIV.20 of Sierpiński, Wacław (1965), Cardinal and ordinal numbers (2nd ed.), PWN – Polish Scientific Publishers
  • Hessenberg, Gerhard (1906). Grundbegriffe der Mengenlehre. Göttingen: Vandenhoeck & Ruprecht.

Read other articles:

Brian LittrellLittrell in June 2011LahirBrian Thomas Littrell20 Februari 1975 (umur 49)Lexington, Kentucky, ASNama lainBrian T. LittrellB-RokBriSeaverBFrickAlmamaterTates Creek High SchoolPekerjaanPenyanyipenulis laguaktorTahun aktif1993–sekarangSuami/istriLeighanne Wallace ​(m. 2000)​AnakBaylee Littrell (l. 2002)KerabatKevin Richardson (sepupu)Karier musikGenrePopR&BCCMInstrumenVokalgitarLabelReunionJiveArtis terkaitBackstreet BoysNKOTBSBSit...

 

 

Gunung KarangetangTitik tertinggiKetinggian1.827 m / 5.994 kaki (Puncak Selatan),1.784 m / 5.853 kaki ({Puncak Utara)Koordinat2°46′40″N 125°24′27″E / 2.77778°N 125.40750°E / 2.77778; 125.40750 GeografiLetakSiau, IndonesiaGeologiJenis gunungStratovolcano[1] Gunung Karangetang (dikenal juga dengan nama Api Siau) adalah gunung berapi yang terletak di bagian utara Sulawesi Utara, Indonesia tepatnya di Kabupaten Kepulauan Siau Tagulandang Biaro. Gu...

 

 

Dalam mitologi yunani, Herakles identik dengan sifat maskulin. Maskulinitas (disebut juga kejantanan) adalah sejumlah atribut, perilaku, dan peran yang terkait dengan anak laki-laki dan pria dewasa. Maskulinitas didefinisikan secara sosial dan diciptakan secara biologis.[1][2][3] Sifat maskulin berbeda dengan jenis kelamin.[4][5] baik laki-laki maupun perempuan dapat bersifat maskulin. Ciri-ciri yang melekat pada istilah maskulin adalah keberanian, kema...

العلاقات البوسنية القيرغيزستانية البوسنة والهرسك قيرغيزستان   البوسنة والهرسك   قيرغيزستان تعديل مصدري - تعديل   العلاقات البوسنية القيرغيزستانية هي العلاقات الثنائية التي تجمع بين البوسنة والهرسك وقيرغيزستان.[1][2][3][4][5] مقارنة بين البل�...

 

 

Putri VictoriaPutri Louis dari BattenbergMarchioness Milford HavenFoto oleh Alexander Bassano, 1878Kelahiran(1863-04-05)5 April 1863Kastel Windsor, Windsor, Berkshire, InggrisKematian24 September 1950(1950-09-24) (umur 87)Istana Kensington, London, InggrisPemakaman28 September 1950Gereja St. Mildred, Whippingham, Isle of WightWangsaHesse-DarmstadtNama lengkapVictoria Alberta Elisabeth Mathilde MarieAyahLouis IV, Adipati Agung dari Hesse dan oleh RhineIbuPutri Alice dari Britania RayaPasa...

 

 

Religion in Barbados is predominantly Christian. Religious freedom is established by law and generally enforced in practice, although some minority religious groups have complaints about government practices that interfere with their beliefs. Religion in Barbados (2010)   Protestants (33.7%)  Anglicans (28.8%)  Other Christians (32.1%)  Irreligious (1.9%)  Bahá’ís (1.2%)  Others (1.3%) St. Peter's Parish Church, Saint Peter, Bar...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

La facciata della Chiesa di Santa Maria della Verità La facciata della Chiesa dei Santi Marcellino e Festo Scorcio del Chiostro di Monteoliveto Giovanni Giacomo Di Conforto o Giovanni Giacomo Conforto (1569 – Napoli, giugno 1630) è stato un architetto e ingegnere italiano, attivo a Napoli. Autore di alcune chiese famose della città. Molte sue opere furono portate al termine da altri architetti tra cui Cosimo Fanzago e insieme ad altri architetti del suo periodo spianò la strada per il B...

 

 

Genus of palms Clinosperma Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Monocots Clade: Commelinids Order: Arecales Family: Arecaceae Subfamily: Arecoideae Tribe: Areceae Subtribe: Clinospermatinae Genus: ClinospermaBecc., 1920 Synonyms[1] Brongniartikentia Becc.Lavoixia H.E.Moore Clinosperma is a palm tree genus in the family Arecaceae. The genus has 4 known species, all endemic to the Island of New Caledonia, in the Melanesia bioregion of...

U.S. Army direct reporting unit U.S. Army Medical CommandThe MEDCOM shoulder sleeve insignia incorporates a modified caduceus with snakes entwining a winged sword, rather than the conventional staff.Active1993 - PresentCountryUnited StatesAllegianceUnited StatesBranchUnited States ArmyTypeMedical CommandGarrison/HQFort Sam Houston, San Antonio, TexasWebsitewww.army.mil/armymedicine/CommandersCurrentcommanderLTG Mary V. KruegerInsigniaDistinctive unit insigniaMilitary unit The U.S. Army Medica...

 

 

International Commission on Radiological ProtectionAbbreviationICRPFormation1928TypeINGOLocationOttawa, Ontario, CanadaRegion served WorldwideOfficial language EnglishWebsiteICRP Official website The International Commission on Radiological Protection (ICRP) is an independent, international, non-governmental organization, with the mission to protect people, animals, and the environment from the harmful effects of ionising radiation. Its recommendations form the basis of radiological protectio...

 

 

Arab historian (1073–1160) Ibn al-Qalanisi ابن القلانسيBornAbu Ya'la Hamzah ibn al-Asad ibn al-Qalanisi ابو يعلى حمزة ابن الاسد ابن القلانسي1071DamascusDied1160DamascusNationalityArabYears active1071-1160 Abū Yaʿlā Ḥamzah ibn al-Asad ibn al-Qalānisī (Arabic: ابو يعلى حمزة ابن الاسد ابن القلانسي; c. 1071 – 18 March 1160) was an Arab politician and chronicler in 12th-century Damascus. Biography Abu Ya'la ('fa...

Peta Lokasi Kabupaten Pidie di Aceh Berikut ini adalah daftar kecamatan dan gampong di kabupaten Pidie, Provinsi Aceh, Indonesia. Kabupaten Pidie memiliki 23 kecamatan dan 730 gampong dengan kode pos 24115-24186 (dari total 243 kecamatan dan 5827 gampong di seluruh Aceh). Per tahun 2010 jumlah penduduk di wilayah ini adalah 378.278 (dari penduduk seluruh provinsi Aceh yang berjumlah 4.486.570) yang terdiri atas 183.675 pria dan 194.603 wanita (rasio 94,38). Dengan luas daerah 316.924 ha (diba...

 

 

Questa voce o sezione sull'argomento matematica non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. f − 1 {\displaystyle f^{-1}} manda 3 in a poiché f manda a in 3 In matematica, una funzione f : X → Y {\displaystyle f\colon X\to Y} si dice invertibile se esiste una funzione g : Y...

 

 

Katedral AugsburgJerman: Dom Mariä Heimsuchungcode: de is deprecated Katedral AugsburgLokasiAugsburg, BavariaNegaraJermanDenominasiGereja Katolik RomaSejarahDedikasiSanta MariaArsitekturStatusKatedralStatus fungsionalAktifGayaRomanesque/GotikAdministrasiKeuskupanKeuskupan Augsburg Katedral Augsburg yang secara resmi bernama Katedral Kunjungan Bunda Maria dan Hati Yesus Yang Mahakudus (Jerman: Dom Mariä Heimsuchungcode: de is deprecated ) adalah sebuah gereja katedral Katolik yang terletak d...

← жовтень → Пн Вт Ср Чт Пт Сб Нд   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31       2024 рік 3 жовтня 276-й день року (277-й у високосні роки) в григоріанському календарі. До кінця року залишається 89 днів. Цей день в історії: 2 жовтня—3 жовтня—4 жовтня Зміст 1 Свята і ...

 

 

Stendardo reale della Thailandia Il Re di Thailandia (พระมหากษัตริย์ไทย) è il capo di Stato della Thailandia (un tempo nota anche con il nome di Siam, ma va ricordato che questo nome è stato dato dagli europei al Regno Ayutthaya ed è stato ufficialmente adottato solo nel 1782 da re Rama I) e il capo della dinastia Chakri, la quale ancora oggi[1] guida la Thailandia. Il sovrano attuale è Vajiralongkorn, in carica dal 13 ottobre 2016[2] con ...

 

 

Executive order 9981 Données clés Présentation Titre Executive order Establishing the President's Committee on Equality of Treatment and Opportunity In the Armed Forces. Pays Etats-Unis Branche Armées des Etats-Unis Adoption et entrée en vigueur Gouvernement President Harry S. Truman Promulgation 26 juillet 1948 modifier L'Executive order 9981 ou décret présidentiel 9981 est signé par le Président Harry S. Truman le 26 juillet 1948. Ce décret abolit les discriminations fondées sur...

American electronic music duo For the album, see The Crystal Method (album). The Crystal MethodThe Crystal Method performing at Lollapalooza, 2012Background informationOriginLas Vegas, Nevada, U.S.GenresBig beatalternative dancetrip hopelectronic rockYears active1993–presentLabelsOutpostGeffenV2Tiny EUltraImmortalEpicMembers Scott Kirkland Past members Ken Jordan Websitethecrystalmethod.com The Crystal Method is an American electronic music act formed in Las Vegas, Nevada, by Ken Jordan and...

 

 

Military enlisting during Ottoman empire This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Conscription in the Ottoman Empire – news · newspapers · books · schola...