Differintegral

In fractional calculus, an area of mathematical analysis, the differintegral is a combined differentiation/integration operator. Applied to a function ƒ, the q-differintegral of f, here denoted by

is the fractional derivative (if q > 0) or fractional integral (if q < 0). If q = 0, then the q-th differintegral of a function is the function itself. In the context of fractional integration and differentiation, there are several definitions of the differintegral.

Standard definitions

The four most common forms are:

  • The Riemann–Liouville differintegral
    This is the simplest and easiest to use, and consequently it is the most often used. It is a generalization of the Cauchy formula for repeated integration to arbitrary order. Here, .
  • The Grunwald–Letnikov differintegral
    The Grunwald–Letnikov differintegral is a direct generalization of the definition of a derivative. It is more difficult to use than the Riemann–Liouville differintegral, but can sometimes be used to solve problems that the Riemann–Liouville cannot.
  • The Weyl differintegral
    This is formally similar to the Riemann–Liouville differintegral, but applies to periodic functions, with integral zero over a period.
  • The Caputo differintegral
    In opposite to the Riemann-Liouville differintegral, Caputo derivative of a constant is equal to zero. Moreover, a form of the Laplace transform allows to simply evaluate the initial conditions by computing finite, integer-order derivatives at point .

Definitions via transforms

The definitions of fractional derivatives given by Liouville, Fourier, and Grunwald and Letnikov coincide.[1] They can be represented via Laplace, Fourier transforms or via Newton series expansion.

Recall the continuous Fourier transform, here denoted :

Using the continuous Fourier transform, in Fourier space, differentiation transforms into a multiplication:

So, which generalizes to

Under the bilateral Laplace transform, here denoted by and defined as , differentiation transforms into a multiplication

Generalizing to arbitrary order and solving for , one obtains

Representation via Newton series is the Newton interpolation over consecutive integer orders:

For fractional derivative definitions described in this section, the following identities hold:

[2]

Basic formal properties

  • Linearity rules

  • Zero rule
  • Product rule

In general, composition (or semigroup) rule is a desirable property, but is hard to achieve mathematically and hence is not always completely satisfied by each proposed operator;[3] this forms part of the decision making process on which one to choose:

  • (ideally)
  • (in practice)

See also

References

  1. ^ Herrmann, Richard (2011). Fractional Calculus: An Introduction for Physicists. ISBN 9789814551076.
  2. ^ See Herrmann, Richard (2011). Fractional Calculus: An Introduction for Physicists. p. 16. ISBN 9789814551076.
  3. ^ See Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. (2006). "2. Fractional Integrals and Fractional Derivatives §2.1 Property 2.4". Theory and Applications of Fractional Differential Equations. Elsevier. p. 75. ISBN 9780444518323.

Read other articles:

Beta Aquilae Beta Aquilae Data pengamatan Epos J2000      Ekuinoks J2000 Rasi bintang Aquila Asensio rekta 19h 55m 18.8s Deklinasi +06° 24′ 24″ Magnitudo tampak (V) 3.71/11.4 Ciri-ciri Kelas spektrum G8 IVvar/M3 Indeks warna U−B 0.48 r-i = 0.49 Indeks warna B−V 0.86 Jenis variabel Bintang variabel AstrometriKecepatan radial (Rv)-40.3 km/sGerak diri (μ) RA: 46.35 mdb/thn Dek.: -481.32 mdb/thn Paralaks (π)72,...

 

نهائي كأس أوروبا 1988احتفال لاعبي آيندهوفن بالكأس.الحدثكأس أوروبا 1987–88 آيندهوفن بنفيكا 0 0 بعد انتهاء الوقتين الأصلي والإضافي، فاز آيندهوفن 6–5 في ضربات الترجيح.التاريخ25 مايو 1988الملعبمرسيدس بنز أرينا، شتوتغارتالحكملويجي أغنولين (إيطاليا)الحضور64,000 → 1987 1989 ← نهائي كأس أورو...

 

United Kingdom tax codes Taxation in the United Kingdom UK Government Departments HM Treasury HM Revenue and Customs UK Government VAT Income tax PAYE National Insurance Health and Social Care Levy (proposal abolished) Corporation tax Capital gains tax Motoring taxes Inheritance tax Stamp Duty Stamp Duty Reserve Tax Stamp Duty Land Tax Annual Tax on Enveloped Dwellings Insurance Premium Tax Air Passenger Duty Petroleum Revenue Tax Aggregates Levy Various alcohol- and gambling-related duties B...

Valeurs actuelles Pays France Langue Français Périodicité Hebdomadaire, parution le jeudi Genre Magazine d'actualité Prix au numéro 5,90 € Diffusion 114 184 ex. (2021) Fondateur Raymond Bourgine Date de fondation 1966 (il y a 58 ans) Ville d’édition Clichy Propriétaire Iskandar Safa via Groupe Valmonde Directeur de publication Erik Monjalous Directeur de la rédaction Tugdual Denis Rédacteur en chef Mickaël Fonton et Raphaël Stainville (France)Antoine Colonna (monde)Fréd�...

 

Constellation of small Earth observation satellites Terra Bella redirects here. For the US city, see Terra Bella, California. SkySat is a constellation of sub-meter resolution Earth observation satellites owned by Planet Labs, providing imagery, high-definition video and analytics services.[1][2] Planet acquired the satellites with their purchase of Terra Bella (formerly Skybox Imaging), a Mountain View, California-based company founded in 2009 by Dan Berkenstock, Julian Mann,...

 

العلاقات الرواندية الماليزية رواندا ماليزيا   رواندا   ماليزيا تعديل مصدري - تعديل   العلاقات الرواندية الماليزية هي العلاقات الثنائية التي تجمع بين رواندا وماليزيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا...

National Hockey League cross-town rivalry between the Anaheim Ducks and Los Angeles Kings Freeway Face-Off Anaheim Ducks Los Angeles Kings First meetingDecember 2, 1993Latest meetingFebruary 24, 2024Next meetingApril 9, 2024StatisticsMeetings total168All-time series80–60–11–17 (LAK)Regular season series76–57–11–17 (LAK)Postseason results4–3 (LAK)Largest victoryLAK 7–1 ANADecember 27, 1995Longest win streakLAK W8Current win streakLAK W8Postseason history 2014 second round: King...

 

Karakter dalam seri NarutoObito UchihaうちはオビトObito UchihaPenampilan perdanaMangaBab 239AnimeNaruto Shipuden episode 32tampil diAnime, manga, film, OVA, dan permainanPengisi suaraInggrisMichael YurchakJepangWataru Takagi Informasi karakter ProfilUlang tahun10 FebruariJenis kelamin Laki-lakiUsiaKakashi Gaiden: 13Bagian II: 29-31Afiliasi •  Konohagakure  • Akatsuki  •  KirigakureTim • Tim MinatoKlan Klan UchihaTingkatanTingkatan ninjaChuuninLulus ...

 

Simone Beccadelli di Bolognaarcivescovo della Chiesa cattolica  Incarichi ricopertiArcivescovo metropolita di Palermo (1446-1465)  Nato30 settembre 1419 a Palermo Nominato arcivescovo30 maggio 1446 da papa Eugenio IV Consacrato vescovoin data sconosciuta Deceduto8 gennaio 1465 (45 anni) a Palermo   Manuale Simone Beccadelli di Bologna (Palermo, 30 settembre 1419 – Palermo, 8 gennaio 1465) è stato un arcivescovo cattolico e politico italiano. Biografia Le informazioni su...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Nama ini menggunakan cara penamaan Spanyol: nama keluarga pertama atau paternalnya adalah Gibernau dan nama keluarga kedua atau maternalnya adalah Bultó. Sete GibernauGibernau in 2009KebangsaanSpanishLahir15 Desember 1972 (umur 51)Barcelona, Spain Catatan statistik Karier Kejuaraan Dunia MotoGP Tahun aktif2002–2006, 2009 PabrikanSuzuki, Honda, Ducati Juara dunia0Klasemen 200919th (12 pts) Start Menang Podium Pole F. lap Poin 83 8 24 12 5 842 Karier Kejuaraan Dunia MotoETahun akt...

 

Ship designed for operations near shore Not to be confused with Coastal defence ship. Ships of the United States NavyShips in current service Current ships Ships grouped alphabetically A–B C D–F G–H I–K L M N–O P Q–R S T–V W–Z Ships grouped by type Aircraft carriers Airships Amphibious warfare ships Auxiliaries Battlecruisers Battleships Cruisers Destroyers Destroyer escorts Destroyer leaders Escort carriers Frigates Hospital ships Littoral combat ships Mine warfare vessels Mo...

Comuni di Haiti. I comuni di Haiti sono la suddivisione di terzo livello del Paese caraibico. I 10 dipartimenti hanno 41 arrondissement suddivisi in 133 comuni. In ogni comune c'è un consiglio municipale (conseil municipal) di tre membri, eletti per gli abitanti del comune per un termine di 4 anni. Il consiglio municipale è diretto da un presidente (président) o un sindaco (maire). Indice 1 Lista 1.1 Dipartimento dell'Artibonite 1.2 Dipartimento del Centro 1.3 Dipartimento di Grand'Anse 1....

 

Soviet-era program that sent dogs to space Space dogs redirects here. For the film, see Space Dogs. Dogs in space redirects here. For the film, see Dogs in Space. For the TV series, see Dogs in Space (TV series). You can help expand this article with text translated from the corresponding article in Russian. (November 2022) Click [show] for important translation instructions. View a machine-translated version of the Russian article. Machine translation, like DeepL or Google Translate, is...

 

Міністерство оборони України (Міноборони) Емблема Міністерства оборони та Прапор Міністерства оборони Будівля Міністерства оборони у КиєвіЗагальна інформаціяКраїна  УкраїнаДата створення 24 серпня 1991Попередні відомства Міністерство оборони СРСР Народний комісарі...

Sebuah gambar pria yang mengangguk Menganggukkan kepala adalah sebuah isyarat yang dilakukan dengan cara menaik-turunkan kepala. Dalam beberapa budaya, istuarat tersebut sangat umum, tetapi tidak semua, dipakai untuk menyatakan persetujuan, penerimaan atau rasa tau. Sindrom mengangguk Mengangguk juga adalah gejala penyakit yang belum dijelaskan. Sindrom tersebut kebanyakan menyerang anak di bawah 15 tahun, dan mula-mula didokumentasikan di Tanzania pada 1962.[1] Lihat pula Menggoyang ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2023. Kampung Bali, Kelurahan Duri Kepa, Kecamatan Kebon Jeruk, kode pos 11510 - Jakarta Barat Kampung BaliKampungNegara IndonesiaProvinsiDaerah Khusus Ibukota JakartaKota AdministrasiJakarta BaratKecamatanKebon JerukKodepos11510Luas40.000 m² Kampung Bal...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Putih Melepak Salju di BulgariaCommon connotationsSalju     Koordinat warnaTriplet hex#FFFAFAsRGBB    (r, g, b)(255, 250, 250)CMYKH   (c, m, y, k)(0, 2, 2, 0)HSV       (h, s, v)(0°, 2%, 100%)SumberDafta...

PBS member network in Colorado Rocky Mountain PBSTypeNon-commercial educational broadcast television networkBrandingRocky Mountain PBSCountryUnited StatesFirst air dateJanuary 20, 1956 (68 years ago) (1956-01-20)Broadcast areastatewide ColoradoOwnerRocky Mountain Public Media, Inc.Digital channel(s)see § StationsSister stationsKUVOAffiliation(s).1: PBSfor others, see § SubchannelsFormer affiliationsNET (1956–1970)Official websitewww.rmpbs.org Rocky Mountain PB...

 

English folklore character from Robin Hood Robin Shoots with Sir Guy by Louis Rhead. Illustration to Bold Robin Hood and His Outlaw Band: Their Famous Exploits in Sherwood Forest Sir Guy of Gisbourne (also spelled Gisburne, Gisborne, Gysborne, or Gisborn) is a character from the Robin Hood legends of English folklore. He first appears in Robin Hood and Guy of Gisborne (Child Ballad 118),[1] where he is an assassin who attempts to kill Robin Hood but is killed by him. In later depictio...