Share to: share facebook share twitter share wa share telegram print page

Coproduct

In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products within a given category.

Definition

Let be a category and let and be objects of An object is called the coproduct of and written or or sometimes simply if there exist morphisms and satisfying the following universal property: for any object and any morphisms and there exists a unique morphism such that and That is, the following diagram commutes:

The unique arrow making this diagram commute may be denoted or The morphisms and are called canonical injections, although they need not be injections or even monic.

The definition of a coproduct can be extended to an arbitrary family of objects indexed by a set The coproduct of the family is an object together with a collection of morphisms such that, for any object and any collection of morphisms there exists a unique morphism such that That is, the following diagram commutes for each :

The coproduct of the family is often denoted or

Sometimes the morphism may be denoted to indicate its dependence on the individual s.

Examples

The coproduct in the category of sets is simply the disjoint union with the maps ij being the inclusion maps. Unlike direct products, coproducts in other categories are not all obviously based on the notion for sets, because unions don't behave well with respect to preserving operations (e.g. the union of two groups need not be a group), and so coproducts in different categories can be dramatically different from each other. For example, the coproduct in the category of groups, called the free product, is quite complicated. On the other hand, in the category of abelian groups (and equally for vector spaces), the coproduct, called the direct sum, consists of the elements of the direct product which have only finitely many nonzero terms. (It therefore coincides exactly with the direct product in the case of finitely many factors.)

Given a commutative ring R, the coproduct in the category of commutative R-algebras is the tensor product. In the category of (noncommutative) R-algebras, the coproduct is a quotient of the tensor algebra (see free product of associative algebras).

In the case of topological spaces, coproducts are disjoint unions with their disjoint union topologies. That is, it is a disjoint union of the underlying sets, and the open sets are sets open in each of the spaces, in a rather evident sense. In the category of pointed spaces, fundamental in homotopy theory, the coproduct is the wedge sum (which amounts to joining a collection of spaces with base points at a common base point).

The concept of disjoint union secretly underlies the above examples: the direct sum of abelian groups is the group generated by the "almost" disjoint union (disjoint union of all nonzero elements, together with a common zero), similarly for vector spaces: the space spanned by the "almost" disjoint union; the free product for groups is generated by the set of all letters from a similar "almost disjoint" union where no two elements from different sets are allowed to commute. This pattern holds for any variety in the sense of universal algebra.

The coproduct in the category of Banach spaces with short maps is the l1 sum, which cannot be so easily conceptualized as an "almost disjoint" sum, but does have a unit ball almost-disjointly generated by the unit ball is the cofactors.[1]

The coproduct of a poset category is the join operation.

Discussion

The coproduct construction given above is actually a special case of a colimit in category theory. The coproduct in a category can be defined as the colimit of any functor from a discrete category into . Not every family will have a coproduct in general, but if it does, then the coproduct is unique in a strong sense: if and are two coproducts of the family , then (by the definition of coproducts) there exists a unique isomorphism such that for each .

As with any universal property, the coproduct can be understood as a universal morphism. Let be the diagonal functor which assigns to each object the ordered pair and to each morphism the pair . Then the coproduct in is given by a universal morphism to the functor from the object in .

The coproduct indexed by the empty set (that is, an empty coproduct) is the same as an initial object in .

If is a set such that all coproducts for families indexed with exist, then it is possible to choose the products in a compatible fashion so that the coproduct turns into a functor . The coproduct of the family is then often denoted by

and the maps are known as the natural injections.

Letting denote the set of all morphisms from to in (that is, a hom-set in ), we have a natural isomorphism

given by the bijection which maps every tuple of morphisms

(a product in Set, the category of sets, which is the Cartesian product, so it is a tuple of morphisms) to the morphism

That this map is a surjection follows from the commutativity of the diagram: any morphism is the coproduct of the tuple

That it is an injection follows from the universal construction which stipulates the uniqueness of such maps. The naturality of the isomorphism is also a consequence of the diagram. Thus the contravariant hom-functor changes coproducts into products. Stated another way, the hom-functor, viewed as a functor from the opposite category to Set is continuous; it preserves limits (a coproduct in is a product in ).

If is a finite set, say , then the coproduct of objects is often denoted by . Suppose all finite coproducts exist in C, coproduct functors have been chosen as above, and 0 denotes the initial object of C corresponding to the empty coproduct. We then have natural isomorphisms

These properties are formally similar to those of a commutative monoid; a category with finite coproducts is an example of a symmetric monoidal category.

If the category has a zero object , then we have a unique morphism (since is terminal) and thus a morphism . Since is also initial, we have a canonical isomorphism as in the preceding paragraph. We thus have morphisms and , by which we infer a canonical morphism . This may be extended by induction to a canonical morphism from any finite coproduct to the corresponding product. This morphism need not in general be an isomorphism; in Grp it is a proper epimorphism while in Set* (the category of pointed sets) it is a proper monomorphism. In any preadditive category, this morphism is an isomorphism and the corresponding object is known as the biproduct. A category with all finite biproducts is known as a semiadditive category.

If all families of objects indexed by have coproducts in , then the coproduct comprises a functor . Note that, like the product, this functor is covariant.

See also

References

  1. ^ Qiaochu Yuan (June 23, 2012). "Banach spaces (and Lawvere metrics, and closed categories)". Annoying Precision.

External links

Read other articles:

Murder victim Murder of Tara Lynn GrantGrant in 2006Date2 March 2007 (2007-03-02) (body discovered)LocationMacomb County, Michigan, U.S.ArrestsStephen GrantSentence50–80 years imprisonment Tara Lynn Grant (28 June 1972 − 9 February 2007) was a married American woman, mother of two children from Macomb County, Michigan, and a successful consultant at Washington Group International. She became nationally known as the victim of murder by her husband, Stephen Grant, in February 20…

إن حيادية وصحة هذه المقالة محلُّ خلافٍ. ناقش هذه المسألة في صفحة نقاش المقالة، ولا تُزِل هذا القالب من غير توافقٍ على ذلك. (نقاش) التلفزيون العربي السوري معلومات عامة المالك الحكومة السورية تاريخ أول بث 23 يوليو 1960 تاريخ آخر بث حتى الآن. البلد  سوريا اللغة العربية الموقع الر

27°20′00″N 0°13′00″W / 27.333333333333°N 0.21666666666667°W / 27.333333333333; -0.21666666666667 توات     الإحداثيات 27°20′00″N 0°13′00″W / 27.333333333333°N 0.21666666666667°W / 27.333333333333; -0.21666666666667  تقسيم إداري  البلد الجزائر  خصائص جغرافية ارتفاع 260 متر  تعديل مصدري - تعديل   توات هي إقليم

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) ميلفين رودريغوس   معلومات شخصية الميلاد 8 يوليو 1962 (61 سنة)  مانغلور  مواطنة الهند  الحياة العملية المهنة شاعر،  وكاتب  اللغات الكونكانية  الجو

Former television broadcaster This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: USA Broadcasting – news · newspapers · books · scholar · JSTOR (February 2022) (Learn how and when to remove this template message) USA BroadcastingTypeSubsidiaryIndustryBroadcast televisionPredecessorSilver King Broadcasting (1986–…

International multi-sport events for disabled athletes Paralympic Games Main topics Bids Charter Host cities IPC NPCs Medal tables Medalists Sports Symbols Games Summer Paralympics Winter Paralympics Regional games Asian Para Games African Para Games European Para Championships Parapan American Games vte Ice Sledge Hockey: United States (blue shirts) vs Japan (white shirts) during the 2010 Paralympics in Vancouver. The Paralympic sports comprise all the sports contested in the Summer and Winter …

1931 film This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: My Aunt from Honfleur 1931 film – news · newspapers · books · scholar · JSTOR (July 2021) (Learn how and when to remove this template message) My Aunt from HonfleurDirected byAndré GilloisWritten byHenri Diamant-BergerBased onMy Aunt from Honfleur …

Pemandangan Jalan Palmerah Barat pada siang hari. Jalan Palmerah Barat adalah salah satu jalan utama di Jakarta. Jalan ini menghubungkan Stasiun Palmerah dan Rawa Belong. Jalan ini melintang sepanjang 1,5 kilometer dari persimpangan Pasar Palmerah sampai persimpangan Rawa Belong. Jalan ini melintasi 3 wilayah administratif di Provinsi DKI Jakarta, yaitu: Kota Administrasi Jakarta Pusat Tanah Abang, Jakarta Pusat Gelora, Tanah Abang, Jakarta Pusat Kota Administrasi Jakarta Barat Palmerah, Jakarta…

IAAF World Athletics TourSportTrack and fieldFounded2006Ceased2009Qualificationfor World Athletics FinalOfficial websiteIAAF Official website The IAAF World Athletics Tour was an annual global circuit of one day track and field competitions organized by the International Association of Athletics Federations (IAAF). Formed in 2006, it comprised two separate levels of athletics meetings: the first level being the IAAF Golden League and IAAF Super Grand Prix events, and the second comprising IAAF G…

Artikel ini memberikan informasi dasar tentang topik kesehatan. Informasi dalam artikel ini hanya boleh digunakan hanya untuk penjelasan ilmiah, bukan untuk diagnosis diri dan tidak dapat menggantikan diagnosis medis. Perhatian: Informasi dalam artikel ini bukanlah resep atau nasihat medis. Wikipedia tidak memberikan konsultasi medis. Jika Anda perlu bantuan atau hendak berobat, berkonsultasilah dengan tenaga kesehatan profesional. HematuriaMicroscopic hematuriaInformasi umum Dalam kedokteran, h…

Ploaghe PiàgheKomuneComune di PloagheLokasi Ploaghe di Provinsi SassariNegara ItaliaWilayah SardiniaProvinsiSassari (SS)Pemerintahan • Wali kotaCarlo SotgiuLuas • Total96,27 km2 (37,17 sq mi)Ketinggian427 m (1,401 ft)Populasi (2016) • Total4,538[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos07017Kode area telepon079Situs webhttp://www.comune.ploaghe.ss.it Ploaghe (bahasa Sardinia: Piàghe…

Kapal tempur kelas Nagato Kapal tempur Jepang Nagato pada 30 September 1920 Tentang kelas Nama:Kelas NagatoOperator: Angkatan Laut Kekaisaran JepangDidahului oleh:Kapal tempur kelas-IseDigantikan oleh:Kapal tempur kelas-TosaDibangun:1917–1921Beroperasi:1920–1945Selesai:2Hilang:1 Ciri-ciri umum Jenis Kapal tempur DreadnoughtBerat benaman 32.720 t (32.200 ton panjang) (standard)Panjang 2.158 m (7.080 ft 1 in) (keseluruhan)Lebar 2.902 m (9.521 ft 0 i…

Gereja Katedral Salisbury, tempat Tata Ibadat Sarum tumbuh dan berkembang Tata Ibadat Sarum, yang kadang-kadang disebut juga Ritus Sarum, adalah ragam tata ibadat Gereja Latin yang tumbuh dan berkembang di Gereja Katedral Salisbury sejak akhir abad ke-11 sampai zaman Reformasi Inggris.[1] Tata Ibadat Sarum sangat mirip dengan Ritus Romawi, dan hanya sekitar 10 persen unsur-unsurnya yang berasal dari luar Ritus Romawi.[2] Tata ibadat ala gereja katedral ini dihormati di mana-mana …

Medical conditionMedullary carcinomaMicrograph of a medullary carcinoma of the thyroid. H&E stain.SpecialtyOncology  Medullary carcinoma may refer to one of several different tumors of epithelial origin. As the term medulla is a generic anatomic descriptor for the mid-layer of various organ tissues, a medullary tumor usually arises from the mid-layer tissues of the relevant organ. Medullary carcinoma most commonly refers to: Medullary thyroid cancer Medullary carcinoma of the breast Med…

‎Adquisición territorial y fecha de admisión de los Estados‎. Expansión territorial estadounidenses por fuera del territorio continental. La historia territorial de los Estados Unidos es la evolución de las fronteras y territorios de ese país desde su creación. Se recogen en un cuadro cada uno de los cambios en las fronteras interiores y exteriores del país, así como el estatus y los cambios de nombre. También muestra las áreas circundantes que finalmente pasaron a formar parte de …

Jaromír Blažek Datos personalesNacimiento Brno, República Checa29 de diciembre de 1972Nacionalidad(es) ChecaAltura 1.88 metrosCarrera deportivaDeporte FútbolClub profesionalDebut deportivo 1990(Slavia Praga)Posición GuardametaRetirada deportiva 2015(FC Vysočina Jihlava)Selección nacionalSelección CZE República ChecaPart. 14[editar datos en Wikidata] Jaromír Blažek (Brno, República Checa, 29 de diciembre de 1972) es un exfutbolista checo. Jugaba de portero y su primer e…

Former S-Class submarine of the US Navy The ceremony to rename the US S-class submarine as Polish submarine ORP Jastrząb. Lt.Cmdr. Boleslaw Romanowski waits for officials in front of the crew. History Poland NameJastrząb NamesakeHawk BuilderFore River Shipyard, Quincy, Massachusetts Laid down26 October 1918 Launched29 May 1922 AcquiredOn loan from the Royal Navy Commissioned4 November 1941[1] FateSunk by friendly fire, 2 May 1942 General characteristics Class and typeS-class submarine …

National Highway in India National Highway 113Map of National Highway 113 in redRoute informationAuxiliary route of NH 13Length165 km (103 mi)Major junctionsSouth endHawa CampNorth endKibithu, Arunachal Pradesh LocationCountryIndiaStatesArunachal Pradesh Highway system Roads in India Expressways National State Asian ← NH 13→ NH 113 National Highway 113 (NH 113) is a National Highway in North East India that connects Hawa Camp and Kibithu in Arunachal Pradesh.[1&#…

Elected official This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help…

2021 Filipino game show season Season of television series Everybody, Sing!Season 1Hosted byVice GandaNo. of contestants25–100Winner7 groups Country of originPhilippinesNo. of episodes36ReleaseOriginal networkKapamilya Channel[a]Original releaseJune 5 (2021-06-05) –October 10, 2021 (2021-10-10)Season chronologyNext →Season 2 List of episodes The first season of the musical game show Everybody, Sing! premiered on Kapamilya Channel, Kapamilya Online Live, and …

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.12.36.72