Category of abelian groups

In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category:[1] indeed, every small abelian category can be embedded in Ab.[2]

Properties

The zero object of Ab is the trivial group {0} which consists only of its neutral element.

The monomorphisms in Ab are the injective group homomorphisms, the epimorphisms are the surjective group homomorphisms, and the isomorphisms are the bijective group homomorphisms.

Ab is a full subcategory of Grp, the category of all groups. The main difference between Ab and Grp is that the sum of two homomorphisms f and g between abelian groups is again a group homomorphism:

(f+g)(x+y) = f(x+y) + g(x+y) = f(x) + f(y) + g(x) + g(y)
       = f(x) + g(x) + f(y) + g(y) = (f+g)(x) + (f+g)(y)

The third equality requires the group to be abelian. This addition of morphism turns Ab into a preadditive category, and because the direct sum of finitely many abelian groups yields a biproduct, we indeed have an additive category.

In Ab, the notion of kernel in the category theory sense coincides with kernel in the algebraic sense, i.e. the categorical kernel of the morphism f : AB is the subgroup K of A defined by K = {xA : f(x) = 0}, together with the inclusion homomorphism i : KA. The same is true for cokernels; the cokernel of f is the quotient group C = B / f(A) together with the natural projection p : BC. (Note a further crucial difference between Ab and Grp: in Grp it can happen that f(A) is not a normal subgroup of B, and that therefore the quotient group B / f(A) cannot be formed.) With these concrete descriptions of kernels and cokernels, it is quite easy to check that Ab is indeed an abelian category.

The product in Ab is given by the product of groups, formed by taking the Cartesian product of the underlying sets and performing the group operation componentwise. Because Ab has kernels, one can then show that Ab is a complete category. The coproduct in Ab is given by the direct sum; since Ab has cokernels, it follows that Ab is also cocomplete.

We have a forgetful functor AbSet which assigns to each abelian group the underlying set, and to each group homomorphism the underlying function. This functor is faithful, and therefore Ab is a concrete category. The forgetful functor has a left adjoint (which associates to a given set the free abelian group with that set as basis) but does not have a right adjoint.

Taking direct limits in Ab is an exact functor. Since the group of integers Z serves as a generator, the category Ab is therefore a Grothendieck category; indeed it is the prototypical example of a Grothendieck category.

An object in Ab is injective if and only if it is a divisible group; it is projective if and only if it is a free abelian group. The category has a projective generator (Z) and an injective cogenerator (Q/Z).

Given two abelian groups A and B, their tensor product AB is defined; it is again an abelian group. With this notion of product, Ab is a closed symmetric monoidal category.

Ab is not a topos since e.g. it has a zero object.

See also

References

  • Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556
  • Mac Lane, Saunders (1998). Categories for the Working Mathematician. Graduate Texts in Mathematics. Vol. 5 (2nd ed.). Springer. ISBN 0-387-98403-8. Zbl 0906.18001.
  • Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004). Categorical foundations. Special topics in order, topology, algebra, and sheaf theory. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge University Press. ISBN 0-521-83414-7. Zbl 1034.18001.

Read other articles:

Maritime service branch of the Pakistan Armed Forces Pakistan Navyپاکستان بحریہCrest of Pakistan NavyFounded14 August 1947 (1947-08-14)[Note 1](76 years, 6 months ago)Country PakistanTypeNavyRole Naval warfare Maritime security Coastal defence Second-strike capability[1] Size[2]: 73 [3]: 33 [4][5][6] 50,000 active-duty personnel 50,000 reserve force 18,000 Marines ...

 

Berenguer Ramón I Berenguer Ramon I [Berengar Raymond I] (1005 – 26 Mei 1035), Dijuluki yang Bengkok atau yang Bungkuk (dalam Bahasa Latin Abad Pertengahan curvus; dalam Bahasa Katala el Corbat; dalam Bahasa Spanyol el Corvado atau el Curvo),[1] merupakan seorang comte Barcelona, Girona, dan Osona dari tahun 1018 hingga kematiannya. Ia adalah putra Ramon Borrell, Comte Barcelona, Girona, and Osona dan istrinya Ermesinde dari Carcassonne.[2] Ia menerima suzerenitas Sancho ya...

 

Kedutaan Besar Republik Indonesia di Dar es SalaamKoordinat6°48′26″S 39°17′10″E / 6.80728°S 39.286201°E / -6.80728; 39.286201Lokasi Dar Es Salaam, TanzaniaAlamat299, Ali Hassan Mwinyi RoadDar es Salaam, TanzaniaDuta BesarRatlan PardedeYurisdiksi Tanzania Burundi Komoro RwandaSitus webkemlu.go.id/daressalaam/id Kedutaan Besar Republik Indonesia di Dar es Salaam (KBRI Dar es Salaam) adalah misi diplomatik Republik Indonesia untuk Republik ...

Fernandinho Fernandinho bermain untuk Shakhtar Donetsk pada 2010Informasi pribadiNama lengkap Fernando Luiz RozaTanggal lahir 4 Mei 1985 (umur 38)Tempat lahir Londrina, BrasilTinggi 1,76 m (5 ft 9+1⁄2 in)Posisi bermain GelandangInformasi klubKlub saat ini Atlético ParanaenseKarier senior*Tahun Tim Tampil (Gol)2002–2005 Atlético Paranaense 72 (14)2005–2013 Shakhtar Donetsk 184 (31)2013–2022 Manchester City 382 (26)2022– Atlético Paranaense 0 (0)Tim nasiona...

 

Political movement in Cornwall, England Part of a series on the History of Cornwall History Timeline History of Cornwall Cornish devolution Medieval kingdom Dumnonia Dumnonii Cornovii Rulers (or titles) Legendary rulers King of Cornwall Duke of Cornwall Feudal Baronies Law Cornish Stannary Parliament Stannary law Modern governance Cornwall Council Proposed Cornish Assembly Local history Truro Topics Cornish language Cornish literature Music history Mining Geological history  Cornwall ...

 

Turkish TV series on Netflix The ClubTurkishKulüp GenrePeriod dramaWritten byNecati Şahin Rana DenizerDirected bySeren YüceZeynep Günay TanStarringGökçe BahadırBarış ArduçSalih BademciFırat TanışMetin AkdülgerAsude KalebekTheme music composerEnder AkayComposersEnder AkayCem ErgunoğluGökhan Mert KoralCountry of originTurkeyOriginal languagesTurkishLadinoGreekNo. of seasons2No. of episodes20ProductionProducerSaner AyarRunning time50 minutesProduction companyO3 MedyaOriginal rele...

American religious broadcaster Not to be confused with Media Education Foundation. Educational Media FoundationCompany typeNonprofitIndustryMass mediaFounded1981FounderBob FogalHeadquartersFranklin, Tennessee, Tennessee, United StatesProductsRadio broadcastingRevenue175,719,561 United States dollar (2016) Websitewww.emfbroadcasting.com Educational Media Foundation (formerly EMF Broadcasting, abbreviated EMF) is an American nonprofit Christian media ministry based in Franklin, Tennessee, ...

 

Maria Bueno Maria Ester Bueno (1964) Nazionalità  Brasile Tennis Termine carriera 1977 Hall of fame  (1978) Carriera Singolare1 Vittorie/sconfitte Titoli vinti 64 Miglior ranking 1° (1959) Risultati nei tornei del Grande Slam  Australian Open F (1965)  Roland Garros F (1964)  Wimbledon V (1959, 1960, 1964)  US Open V (1959, 1963, 1964, 1966) Doppio1 Vittorie/sconfitte Titoli vinti Miglior ranking 1° (1960) Risultati nei tornei del Grande Slam  Australian...

 

Conventional military of Iran; branches of the Iranian Armed Forces Islamic Republic of Iran Armyارتش جمهوری اسلامی ایران ƏRTĒŠ-Ē ŽOMHURIY-Ē ĒSLÂMI-Ē IRÂNSeal of the Islamic Republic of Iran ArmyFlags of the Islamic Republic of Iran ArmyMotto Arabic: وَإِنَّ جُنْدنَا لَهُمْ الْغَالِبُونَ And Our Soldiers, They Verily Would Be the Victors. [Quran 37:173] (Heraldry slogan) Persian: ارتش فدای ملت Army Sacrificed for...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: League of Communists of Bosnia and Herzegovina – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message) Political party in Bosnia and Herzegovina League of Communists of Bosnia and Herzegovina Serbo-Croatian: Savez komunista Bo...

 

Paweł Golański Informasi pribadiNama lengkap Paweł GolańskiTanggal lahir 12 Oktober 1982 (umur 41)Tempat lahir Łódź, PolandiaTinggi 1,83 m (6 ft 0 in)Posisi bermain BekInformasi klubKlub saat ini Korona KielceNomor 6Karier junior ŁKS ŁódźKarier senior*Tahun Tim Tampil (Gol)1999–2000 UKS SMS Łódź 2000–2005 ŁKS Łódź 60 (4)2005 → Legia Warsaw II (pinjaman) 2005–2007 Korona Kielce 48 (3)2007–2010 Steaua Bucureşti 58 (2)2010– Korona Kielce 19 (0)...

 

Coppa Continentale 2017-2018 Competizione Coppa Continentale Sport hockey su pista Edizione 37ª Organizzatore CERH Date dal 14al 15 ottobre 2017 Partecipanti 4 Formula Final four Sede finale Viareggio Risultati Vincitore  Oliveirense(1º titolo) Finalista  Reus Deportiu Semi-finalisti  Barcelos CGC Viareggio Statistiche Incontri disputati 3 Gol segnati 20 (6,67 per incontro) Cronologia della competizione 2016-2017 2018-2019 Manuale La Coppa Continentale 2017...

1947 US bomber aircraft family B-45 Tornado Static display of RB-45C, AF Ser. No. 48-037 Role Strategic bomberType of aircraft National origin United States Manufacturer North American Aviation First flight 17 March 1947 Introduction 22 April 1948 Retired 1959 Status Retired Primary users United States Air ForceRoyal Air Force Number built 143 The North American B-45 Tornado was an early American jet bomber designed and manufactured by aircraft company North American Aviation. It has the...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Alaskan Independence Party – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to ...

 

Cultural center in New York City Scandinavia House – The Nordic Center in AmericaScandinavia HouseEstablished2000 (2000)Location58 Park AvenueManhattan, New York 10016United StatesCoordinates40°44′58″N 73°58′48″W / 40.749451°N 73.980013°W / 40.749451; -73.980013DirectorEdward GallagherArchitectJames Stewart Polshek of Ennead ArchitectsPublic transit accessSubway: ​ trains at 33rd Street ​ trains and train at Grand Central–4...

Daftar penghargaan untuk Robert Downey Jr. Downey di Prancis (Paris) pemutaran perdana Iron Man 3, April 2013 Penghargaan Menang Nominasi Academy Awards 0 2 BAFTA Awards 1 2 Critics' Choice Movie Awards 0 3 Golden Globe Awards 3 5 MTV Movie Awards 2 8 People's Choice Awardss 7 21 Primetime Emmy Awards 0 1 Saturn Awards 4 7 Screen Actors Guild Awards 1 4 Teen Choice Awardss 2 17 Overall 24 53 Berikut adalah daftar penghargaan dan nominasi yang diterima oleh Robert Downey Jr. sepanjang karier ...

 

Building in the City of London 40 Leadenhall Street40 Leadenhall Street in September 2023General informationStatusUnder constructionAddress40 Leadenhall StreetTown or cityLondon, EC3CountryUnited KingdomCost£875million (estimate)[1]ClientHenderson Global InvestorsHeight155 m (170 m AOD)[2]Technical detailsFloor count35Floor areaOffices: 890,000 square feet (82,700 m2)Retail: 20,000 square feet (1,900 m2)[3]Design and constructionArchitecture firmMake Archite...

 

In queueing theory, a discipline within the mathematical theory of probability, the M/M/∞ queue is a multi-server queueing model where every arrival experiences immediate service and does not wait.[1] In Kendall's notation it describes a system where arrivals are governed by a Poisson process, there are infinitely many servers, so jobs do not need to wait for a server. Each job has an exponentially distributed service time. It is a limit of the M/M/c queue model where the number of ...

Desportive brazilian club of Pernambuco Football clubVitória das TabocasFull nameAssociação Acadêmica e Desportiva Vitória das TabocasNickname(s)Tricolor das TabocasTricolor da Zona da MataTricolorFounded3 August 1990; 33 years ago (1990-08-03)GroundCarneirão, Vitória de Santo Antão, Pernambuco state, BrazilCapacity8,000 Home colours Away colours colours Associação Acadêmica e Desportiva Vitória das Tabocas, commonly known as Vitória das Tabocas, or as Acadêmic...

 

American politician (1922–2020) Alan S. Boyd1st United States Secretary of TransportationIn officeJanuary 16, 1967 – January 20, 1969PresidentLyndon B. JohnsonPreceded byPosition establishedSucceeded byJohn Volpe Personal detailsBorn(1922-07-20)July 20, 1922Jacksonville, Florida, U.S.DiedOctober 18, 2020(2020-10-18) (aged 98)Seattle, Washington, U.S.Political partyDemocraticSpouse Flavil Townsend ​ ​(m. 1943; died 2007)​Childre...