Let C be a category with zero morphisms. Given a finite (possibly empty) collection of objects A1, ..., An in C, their biproduct is an object in C together with morphisms
If C is preadditive and the first two conditions hold, then each of the last two conditions is equivalent to when n > 0.[2] An empty, or nullary, product is always a terminal object in the category, and the empty coproduct is always an initial object in the category. Thus an empty, or nullary, biproduct is always a zero object.
Also, biproducts do not exist in the category of sets. For, the product is given by the Cartesian product, whereas the coproduct is given by the disjoint union. This category does not have a zero object.
If the biproduct exists for all pairs of objects A and B in the category C, and C has a zero object, then all finite biproducts exist, making C both a Cartesian monoidal category and a co-Cartesian monoidal category.
If the product and coproduct both exist for some pair of objects A1, A2 then there is a unique morphism such that
It follows that the biproduct exists if and only if f is an isomorphism.
If C is a preadditive category, then every finite product is a biproduct, and every finite coproduct is a biproduct. For example, if exists, then there are unique morphisms such that
for
To see that is now also a coproduct, and hence a biproduct, suppose we have morphisms for some object . Define Then is a morphism from to , and for .