Cartesian closed category

In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum and classical computation.[1]

Etymology

Named after René Descartes (1596–1650), French philosopher, mathematician, and scientist, whose formulation of analytic geometry gave rise to the concept of Cartesian product, which was later generalized to the notion of categorical product.

Definition

The category C is called Cartesian closed[2] if and only if it satisfies the following three properties:

The first two conditions can be combined to the single requirement that any finite (possibly empty) family of objects of C admit a product in C, because of the natural associativity of the categorical product and because the empty product in a category is the terminal object of that category.

The third condition is equivalent to the requirement that the functor – ×Y (i.e. the functor from C to C that maps objects X to X ×Y and morphisms φ to φ × idY) has a right adjoint, usually denoted –Y, for all objects Y in C. For locally small categories, this can be expressed by the existence of a bijection between the hom-sets

which is natural in X, Y, and Z.[3]

Take care to note that a Cartesian closed category need not have finite limits; only finite products are guaranteed.

If a category has the property that all its slice categories are Cartesian closed, then it is called locally cartesian closed.[4] Note that if C is locally Cartesian closed, it need not actually be Cartesian closed; that happens if and only if C has a terminal object.

Basic constructions

Evaluation

For each object Y, the counit of the exponential adjunction is a natural transformation

called the (internal) evaluation map. More generally, we can construct the partial application map as the composite

In the particular case of the category Set, these reduce to the ordinary operations:

Composition

Evaluating the exponential in one argument at a morphism p : XY gives morphisms

corresponding to the operation of composition with p. Alternate notations for the operation pZ include p* and p∘-. Alternate notations for the operation Zp include p* and -∘p.

Evaluation maps can be chained as

the corresponding arrow under the exponential adjunction

is called the (internal) composition map.

In the particular case of the category Set, this is the ordinary composition operation:

Sections

For a morphism p:XY, suppose the following pullback square exists, which defines the subobject of XY corresponding to maps whose composite with p is the identity:

where the arrow on the right is pY and the arrow on the bottom corresponds to the identity on Y. Then ΓY(p) is called the object of sections of p. It is often abbreviated as ΓY(X).

If ΓY(p) exists for every morphism p with codomain Y, then it can be assembled into a functor ΓY : C/YC on the slice category, which is right adjoint to a variant of the product functor:

The exponential by Y can be expressed in terms of sections:

Examples

Examples of Cartesian closed categories include:

  • The category Set of all sets, with functions as morphisms, is Cartesian closed. The product X×Y is the Cartesian product of X and Y, and ZY is the set of all functions from Y to Z. The adjointness is expressed by the following fact: the function f : X×YZ is naturally identified with the curried function g : XZY defined by g(x)(y) = f(x,y) for all x in X and y in Y.
  • The category of finite sets, with functions as morphisms, is Cartesian closed for the same reason.
  • If G is a group, then the category of all G-sets is Cartesian closed. If Y and Z are two G-sets, then ZY is the set of all functions from Y to Z with G action defined by (g.F)(y) = g.F(g−1.y) for all g in G, F:YZ and y in Y.
  • The category of finite G-sets is also Cartesian closed.
  • The category Cat of all small categories (with functors as morphisms) is Cartesian closed; the exponential CD is given by the functor category consisting of all functors from D to C, with natural transformations as morphisms.
  • If C is a small category, then the functor category SetC consisting of all covariant functors from C into the category of sets, with natural transformations as morphisms, is Cartesian closed. If F and G are two functors from C to Set, then the exponential FG is the functor whose value on the object X of C is given by the set of all natural transformations from (X,−) × G to F.
    • The earlier example of G-sets can be seen as a special case of functor categories: every group can be considered as a one-object category, and G-sets are nothing but functors from this category to Set
    • The category of all directed graphs is Cartesian closed; this is a functor category as explained under functor category.
    • In particular, the category of simplicial sets (which are functors X : ΔopSet) is Cartesian closed.
  • Even more generally, every elementary topos is Cartesian closed.
  • In algebraic topology, Cartesian closed categories are particularly easy to work with. Neither the category of topological spaces with continuous maps nor the category of smooth manifolds with smooth maps is Cartesian closed. Substitute categories have therefore been considered: the category of compactly generated Hausdorff spaces is Cartesian closed, as is the category of Frölicher spaces.
  • In order theory, complete partial orders (cpos) have a natural topology, the Scott topology, whose continuous maps do form a Cartesian closed category (that is, the objects are the cpos, and the morphisms are the Scott continuous maps). Both currying and apply are continuous functions in the Scott topology, and currying, together with apply, provide the adjoint.[5]
  • A Heyting algebra is a Cartesian closed (bounded) lattice. An important example arises from topological spaces. If X is a topological space, then the open sets in X form the objects of a category O(X) for which there is a unique morphism from U to V if U is a subset of V and no morphism otherwise. This poset is a Cartesian closed category: the "product" of U and V is the intersection of U and V and the exponential UV is the interior of U∪(X\V).
  • A category with a zero object is Cartesian closed if and only if it is equivalent to a category with only one object and one identity morphism. Indeed, if 0 is an initial object and 1 is a final object and we have , then which has only one element.[6]
    • In particular, any non-trivial category with a zero object, such as an abelian category, is not Cartesian closed. So the category of modules over a ring is not Cartesian closed. However, the functor tensor product with a fixed module does have a right adjoint. The tensor product is not a categorical product, so this does not contradict the above. We obtain instead that the category of modules is monoidal closed.

Examples of locally Cartesian closed categories include:

  • Every elementary topos is locally Cartesian closed. This example includes Set, FinSet, G-sets for a group G, as well as SetC for small categories C.
  • The category LH whose objects are topological spaces and whose morphisms are local homeomorphisms is locally Cartesian closed, since LH/X is equivalent to the category of sheaves . However, LH does not have a terminal object, and thus is not Cartesian closed.
  • If C has pullbacks and for every arrow p : XY, the functor p*  : C/YC/X given by taking pullbacks has a right adjoint, then C is locally Cartesian closed.
  • If C is locally Cartesian closed, then all of its slice categories C/X are also locally Cartesian closed.

Non-examples of locally Cartesian closed categories include:

  • Cat is not locally Cartesian closed.

Applications

In Cartesian closed categories, a "function of two variables" (a morphism f : X×YZ) can always be represented as a "function of one variable" (the morphism λf : XZY). In computer science applications, this is known as currying; it has led to the realization that simply-typed lambda calculus can be interpreted in any Cartesian closed category.

The Curry–Howard–Lambek correspondence provides a deep isomorphism between intuitionistic logic, simply-typed lambda calculus and Cartesian closed categories.

Certain Cartesian closed categories, the topoi, have been proposed as a general setting for mathematics, instead of traditional set theory.

Computer scientist John Backus has advocated a variable-free notation, or Function-level programming, which in retrospect bears some similarity to the internal language of Cartesian closed categories.[7] CAML is more consciously modelled on Cartesian closed categories.

Dependent sum and product

Let C be a locally Cartesian closed category. Then C has all pullbacks, because the pullback of two arrows with codomain Z is given by the product in C/Z.

For every arrow p : XY, let P denote the corresponding object of C/Y. Taking pullbacks along p gives a functor p* : C/YC/X which has both a left and a right adjoint.

The left adjoint is called the dependent sum and is given by composition .

The right adjoint is called the dependent product.

The exponential by P in C/Y can be expressed in terms of the dependent product by the formula .

The reason for these names is because, when interpreting P as a dependent type , the functors and correspond to the type formations and respectively.

Equational theory

In every Cartesian closed category (using exponential notation), (XY)Z and (XZ)Y are isomorphic for all objects X, Y and Z. We write this as the "equation"

(xy)z = (xz)y.

One may ask what other such equations are valid in all Cartesian closed categories. It turns out that all of them follow logically from the following axioms:[8]

  • x×(y×z) = (x×yz
  • x×y = y×x
  • x×1 = x (here 1 denotes the terminal object of C)
  • 1x = 1
  • x1 = x
  • (x×y)z = xz×yz
  • (xy)z = x(y×z)

Bicartesian closed categories

Bicartesian closed categories extend Cartesian closed categories with binary coproducts and an initial object, with products distributing over coproducts. Their equational theory is extended with the following axioms, yielding something similar to Tarski's high school axioms but with a zero:

  • x + y = y + x
  • (x + y) + z = x + (y + z)
  • x×(y + z) = x×y + x×z
  • x(y + z) = xy×xz
  • 0 + x = x
  • x×0 = 0
  • x0 = 1

Note however that the above list is not complete; type isomorphism in the free BCCC is not finitely axiomatizable, and its decidability is still an open problem.[9]

References

  1. ^ Baez, John C.; Stay, Mike (2011). "Physics, Topology, Logic and Computation: A Rosetta Stone" (PDF). In Coecke, Bob (ed.). New Structures for Physics. Lecture Notes in Physics. Vol. 813. Springer. pp. 95–174. arXiv:0903.0340. CiteSeerX 10.1.1.296.1044. doi:10.1007/978-3-642-12821-9_2. ISBN 978-3-642-12821-9. S2CID 115169297.
  2. ^ Saunders, Mac Lane (1978). Categories for the Working Mathematician (2nd ed.). Springer. ISBN 1441931236. OCLC 851741862.
  3. ^ "cartesian closed category in nLab". ncatlab.org. Retrieved 2017-09-17.
  4. ^ Locally cartesian closed category at the nLab
  5. ^ Barendregt, H.P. (1984). "Theorem 1.2.16". The Lambda Calculus. North-Holland. ISBN 0-444-87508-5.
  6. ^ "Ct.category theory - is the category commutative monoids cartesian closed?".
  7. ^ Backus, John (1981). "Function level programs as mathematical objects". Proceedings of the 1981 conference on Functional programming languages and computer architecture - FPCA '81. New York, New York, USA: ACM Press. pp. 1–10. doi:10.1145/800223.806757. ISBN 0-89791-060-5.
  8. ^ Solov'ev, S.V. (1983). "The category of finite sets and Cartesian closed categories". J Math Sci. 22 (3): 1387–1400. doi:10.1007/BF01084396. S2CID 122693163.
  9. ^ Fiore, M.; Cosmo, R. Di; Balat, V. (2006). "Remarks on isomorphisms in typed lambda calculi with empty and sum types" (PDF). Annals of Pure and Applied Logic. 141 (1–2): 35–50. doi:10.1016/j.apal.2005.09.001.

Read other articles:

I'm Not DeadAlbum studio karya P!nkDirilis4 April 2006 (2006-04-04)GenrePop rock, dance-rock, electro rockDurasi54:07LabelLaFace, ZombaProduserMax Martin, Billy Mann, MachoPsycho, Christopher Rojas, Butch Walker, Lukasz Gottwald, Josh Abraham, Pink (Produser Eksekutif)Kronologi P!nk Try This(2003)Try This2003 I'm Not Dead(2006) Funhouse(2008)Funhouse2008 Templat:Extra album cover 2 Singel dalam album I'm Not Dead Stupid GirlsDirilis: 7 Februari 2006 Who KnewDirilis: 8 Mei 2006 U ...

 

 

Protected area in New Mexico, United States Rio Grande del Norte National MonumentRío Grande del Norte, New Mexico.Show map of New MexicoShow map of the United StatesLocationTaos County, New Mexico, United StatesNearest cityQuesta, New MexicoCoordinates36°40′0″N 105°42′0″W / 36.66667°N 105.70000°W / 36.66667; -105.70000Area242,555 acres (98,159 ha)[1]EstablishedMarch 25, 2013Governing bodyU.S. Bureau of Land ManagementWebsiteRio Gran...

 

 

Dataran Tinggi Eritrea. Dataran Tinggi Eritrea membentang hingga Dataran Tinggi Ethiopia di selatan. Region ini mengalami deforestasi besar-besaran sejak periode kolonial Italia pada akhir abad ke-19. Dataran Tinggi ini berisiko mengalami erosi akibat deforestasi. Rata-rata suhu di pegunungan ini sekitar 16 °C. Titik tertinggi di pegunungan ini yang juga merupakan titik tertinggi di Eritrea adalah Amba Soira. Artikel bertopik Eritrea ini adalah sebuah rintisan. Anda dapat membantu Wikip...

Cet article est une ébauche concernant un militaire italien et le Piémont. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Antonio FranziniFonctionsMinistre de la Guerre du royaume de Sardaigne15 - 22 août 1848Giacinto Provana di CollegnoGiuseppe DabormidaDéputéIre législature du royaume de Sardaigne8 mai - 30 décembre 1848Ministre de la Guerre du royaume de Sardaigne16 mars - 27 juillet 1848Giacinto Prov...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Nicaragua (disambigua). Nicaragua (dettagli) (dettagli) (ES) En Dios Confiamos(IT) In Dio confidiamo Nicaragua - Localizzazione Dati amministrativiNome completoRepubblica del Nicaragua Nome ufficialeRepública de Nicaragua Lingue ufficialispagnolo Capitale Managua  (1.321.993 ab. / 2016) PoliticaForma di governoRepubblica presidenziale a sistema a partito egemone PresidenteDaniel Ortega Indipendenza 15 settembre...

 

 

Pour les articles homonymes, voir 30e corps d'armée. 30e corps d'armée Création 21 janvier 1916 Pays France Branche Armée de Terre Type corps d'armée Ancienne dénomination Secteur nord de la Région fortifiée de Verdun Guerres Première Guerre mondiale Batailles 1916 - Bataille de Verdun(Bois des Caures)1918 - 3e Bataille de l'Aisne1918 - 2e bataille de la Marne(Bataille du Soissonnais)(Bataille du Tardenois)1918 - 2e Bataille de Noyon1918 - Poussée vers la position Hindenb...

SS Juve StabiaCalcio Vespe, Gialloblù Segni distintivi Uniformi di gara Casa Trasferta Terza divisa Colori sociali Giallo, blu Simboli Vespa Inno Siamo la Juve Stabia[senza fonte]Vincenzo Greco, Ciro Di Somma e Angelo Di Nocera[senza fonte] Dati societari Città Castellammare di Stabia (NA) Nazione  Italia Confederazione UEFA Federazione FIGC Campionato Serie C Fondazione 1907 Rifondazione1933Rifondazione1953Rifondazione2002 Presidente Andrea Langella Allenato...

 

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Nakankoyo, California – news · newspapers · books · scholar · JSTOR (April 2021) Nakankoyo (also, Naku) is a former Maidu village in Plumas County, California.[1] It was located at Big Spring, but its precise location is unknown.[1] Re...

 

 

Голубянки Самец голубянки икар Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ПервичноротыеБез ранга:ЛиняющиеБез ранга:PanarthropodaТип:ЧленистоногиеПодтип:ТрахейнодышащиеНадкласс:ШестиногиеКласс...

Not to be confused with H or Ⴙ. For the Cyrillic letter representing the voiceless postalveolar fricative, see Sha (Cyrillic). Cyrillic letter Cyrillic letter Ha/He (Shha)Phonetic usage:/h/, /ħ/, /ʰ/, /ɣ/Derived from:Latin letter HThe Cyrillic scriptSlavic lettersАА̀А̂А̄ӒБВГҐДЂЃЕЀЕ̄Е̂ЁЄЖЗЗ́ЅИІЇꙆЍИ̂ӢЙЈКЛЉМНЊОО̀О̂ŌӦПРСС́ТЋЌУУ̀У̂ӮЎӰФХЦЧЏШЩꙎЪЪ̀ЫЬѢЭЮЮ̀ЯЯ̀Non-Slavic lettersӐА̊А̃Ӓ̄ӔӘӘ́Ә̃ӚВ̌...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

County in New Mexico, United States County in New MexicoUnion CountyCountyUnion County Courthouse in ClaytonLocation within the U.S. state of New MexicoNew Mexico's location within the U.S.Coordinates: 36°29′N 103°28′W / 36.48°N 103.47°W / 36.48; -103.47Country United StatesState New MexicoFoundedJanuary 1, 1894SeatClaytonLargest townClaytonArea • Total3,831 sq mi (9,920 km2) • Land3,824 sq mi (9,900...

 

 

Сухопутні війська Ізраїлю זרוע היבשה‬ Емблема Сухопутних військ ІзраїлюЗасновано 1948; 76 років тому (1948)Країна  ІзраїльВид Збройні силиТип сухопутні військаРоль ведення бойових дій переважно на суходоліЧисельність 133 тис. — регулярні війська380 тис. �...

Species of fish Brown trout Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Salmoniformes Family: Salmonidae Genus: Salmo Species: S. trutta Binomial name Salmo truttaLinnaeus, 1758 Morphs Salmo trutta morpha trutta Salmo trutta morpha fario Salmo trutta morpha lacustris Synonyms[2] previous scientific names Trutta fluviatilis (Duhamel, 1771) Trutta salmonata ...

 

 

117th season in existence of Manchester City F.C. Manchester City 2018–19 football seasonManchester City2018–19 seasonOwnerCity Football GroupChairmanKhaldoon Al MubarakManagerPep GuardiolaStadiumEtihad StadiumPremier League1stFA CupWinnersEFL CupWinnersFA Community ShieldWinnersUEFA Champions LeagueQuarter-finalsTop goalscorerLeague: Sergio Agüero (21)All: Sergio Agüero (32)Highest home attendance54,511 vs LiverpoolLowest home attendance32,089 vs Burton AlbionAverage home league attend...

 

 

У этого термина существуют и другие значения, см. The Cure (значения). The Cure The Cure в 2007 году. Слева направо — Порл Томпсон, Джейсон Купер, Роберт Смит, Саймон Гэллап Основная информация Жанры новая волнапостпанк готик-рокдрим-попальтернативный рок Годы 1978 — наши дни Страна ...

Disambiguazione – Capocollo rimanda qui. Se stai cercando il taglio di carne, vedi Capocollo (taglio di carne). Questa voce o sezione sull'argomento salumi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Coppa, CapocolloOriginiLuoghi d'origine Italia Francia RegioniEmilia-RomagnaPugliaCalabriaBasilicataLazioToscanaUmbriaMarcheCampania...

 

 

シャコタン☆ブギ 漫画 作者 楠みちはる 出版社 講談社 掲載誌 週刊ヤングマガジン レーベル ヤンマガKC 巻数 全32巻 映画 原作 楠みちはる 監督 中原俊 脚本 西岡琢也 音楽 芳野藤丸 製作 東映東京撮影所 配給 東映 封切日 1987年 上映時間 90分 OVA 監督 佐藤博暉 脚本 大橋志吉 音楽 朝倉紀幸 アニメーション制作 スタジオぴえろ 製作 ポニーキャニオン 発表期間 1991年2月6�...