Arrow's impossibility theorem is a key result in social choice theory, showing that no ranking-based decision rule can satisfy the requirements of rational choice theory.[1] Most notably, Arrow showed that no such rule can satisfy all of a certain set of seemingly simple and reasonable conditions that include independence of irrelevant alternatives, the principle that a choice between two alternatives A and B should not depend on the quality of some third, unrelated option C.[2][3][4]
In the context of Arrow's theorem, citizens are assumed to have ordinal preferences, i.e. orderings of candidates. If A and B are different candidates or alternatives, then means A is preferred to B. Individual preferences (or ballots) are required to satisfy intuitive properties of orderings, e.g. they must be transitive—if and , then . The social choice function is then a mathematical function that maps the individual orderings to a new ordering that represents the preferences of all of society.
Basic assumptions
Arrow's theorem assumes as background that any non-degenerate social choice rule will satisfy:[15]
It essentially defines social choices as those depending on more than one person's input.[3]
Non-imposition — the system does not ignore the voters entirely when choosing between some pairs of candidates.[4][16]
In other words, it is possible for any candidate to defeat any other candidate, given some combination of votes.[4][16][17]
This is often replaced with the stronger Pareto efficiency axiom: if every voter prefers A over B, then A should defeat B. However, the weaker non-imposition condition is sufficient.[4]
Arrow's original statement of the theorem included non-negative responsiveness as a condition, i.e., that increasing the rank of an outcome should not make them lose—in other words, that a voting rule shouldn't penalize a candidate for being more popular.[2] However, this assumption is not needed or used in his proof (except to derive the weaker condition of Pareto efficiency), and Arrow later corrected his statement of the theorem to remove the inclusion of this condition.[3][18]
Independence of irrelevant alternatives (IIA) — the social preference between candidate A and candidate B should only depend on the individual preferences between A and B.
In other words, the social preference should not change from to if voters change their preference about whether .[3]
Morgenbesser, ordering dessert, is told by a waitress that he can choose between blueberry or apple pie. He orders apple. Soon the waitress comes back and explains cherry pie is also an option. Morgenbesser replies "In that case, I'll have blueberry."
Arrow's theorem shows that if a society wishes to make decisions while always avoiding such self-contradictions, it cannot use ranked information alone.[19]
Theorem
Intuitive argument
Condorcet's example is already enough to see the impossibility of a fair ranked voting system, given stronger conditions for fairness than Arrow's theorem assumes.[20] Suppose we have three candidates (, , and ) and three voters whose preferences are as follows:
Voter
First preference
Second preference
Third preference
Voter 1
A
B
C
Voter 2
B
C
A
Voter 3
C
A
B
If is chosen as the winner, it can be argued any fair voting system would say should win instead, since two voters (1 and 2) prefer to and only one voter (3) prefers to . However, by the same argument is preferred to , and is preferred to , by a margin of two to one on each occasion. Thus, even though each individual voter has consistent preferences, the preferences of society are contradictory: is preferred over which is preferred over which is preferred over .
Because of this example, some authors credit Condorcet with having given an intuitive argument that presents the core of Arrow's theorem.[20] However, Arrow's theorem is substantially more general; it applies to methods of making decisions other than one-man-one-vote elections, such as markets or weighted voting, based on ranked ballots.
The element being in is interpreted to mean that alternative is preferred to alternative . This situation is often denoted or . Denote the set of all preferences on by . Let be a positive integer. An ordinal (ranked)social welfare function is a function[2]
which aggregates voters' preferences into a single preference on . An -tuple of voters' preferences is called a preference profile.
Arrow's impossibility theorem: If there are at least three alternatives, then there is no social welfare function satisfying all three of the conditions listed below:[21]
There is no individual whose preferences always prevail. That is, there is no such that for all and all and , when is preferred to by then is preferred to by .[2]
For two preference profiles and such that for all individuals , alternatives and have the same order in as in , alternatives and have the same order in as in .[2]
Formal proof
Proof by decisive coalition
Arrow's proof used the concept of decisive coalitions.[3]
Definition:
A subset of voters is a coalition.
A coalition is decisive over an ordered pair if, when everyone in the coalition ranks , society overall will always rank .
A coalition is decisive if and only if it is decisive over all ordered pairs.
Our goal is to prove that the decisive coalition contains only one voter, who controls the outcome—in other words, a dictator.
The following proof is a simplification taken from Amartya Sen[22] and Ariel Rubinstein.[23] The simplified proof uses an additional concept:
A coalition is weakly decisive over if and only if when every voter in the coalition ranks , and every voter outside the coalition ranks , then .
Thenceforth assume that the social choice system satisfies unrestricted domain, Pareto efficiency, and IIA. Also assume that there are at least 3 distinct outcomes.
Field expansion lemma — if a coalition is weakly decisive over for some , then it is decisive.
Proof
Let be an outcome distinct from .
Claim: is decisive over .
Let everyone in vote over . By IIA, changing the votes on does not matter for . So change the votes such that in and and outside of .
By Pareto, . By coalition weak-decisiveness over , . Thus .
Similarly, is decisive over .
By iterating the above two claims (note that decisiveness implies weak-decisiveness), we find that is decisive over all ordered pairs in . Then iterating that, we find that is decisive over all ordered pairs in .
Group contraction lemma — If a coalition is decisive, and has size , then it has a proper subset that is also decisive.
Proof
Let be a coalition with size . Partition the coalition into nonempty subsets .
Fix distinct . Design the following voting pattern (notice that it is the cyclic voting pattern which causes the Condorcet paradox):
(Items other than are not relevant.)
Since is decisive, we have . So at least one is true: or .
If , then is weakly decisive over . If , then is weakly decisive over . Now apply the field expansion lemma.
By Pareto, the entire set of voters is decisive. Thus by the group contraction lemma, there is a size-one decisive coalition—a dictator.
Proof by showing there is only one pivotal voter
Proofs using the concept of the pivotal voter originated from Salvador Barberá in 1980.[24] The proof given here is a simplified version based on two proofs published in Economic Theory.[21][25]
Setup
Assume there are n voters. We assign all of these voters an arbitrary ID number, ranging from 1 through n, which we can use to keep track of each voter's identity as we consider what happens when they change their votes. Without loss of generality, we can say there are three candidates who we call A, B, and C. (Because of IIA, including more than 3 candidates does not affect the proof.)
We will prove that any social choice rule respecting unanimity and independence of irrelevant alternatives (IIA) is a dictatorship. The proof is in three parts:
We identify a pivotal voter for each individual contest (A vs. B, B vs. C, and A vs. C). Their ballot swings the societal outcome.
We prove this voter is a partial dictator. In other words, they get to decide whether A or B is ranked higher in the outcome.
We prove this voter is the same person, hence this voter is a dictator.
Part one: There is a pivotal voter for A vs. B
Consider the situation where everyone prefers A to B, and everyone also prefers C to B. By unanimity, society must also prefer both A and C to B. Call this situation profile[0, x].
On the other hand, if everyone preferred B to everything else, then society would have to prefer B to everything else by unanimity. Now arrange all the voters in some arbitrary but fixed order, and for each i let profile i be the same as profile 0, but move B to the top of the ballots for voters 1 through i. So profile 1 has B at the top of the ballot for voter 1, but not for any of the others. Profile 2 has B at the top for voters 1 and 2, but no others, and so on.
Since B eventually moves to the top of the societal preference as the profile number increases, there must be some profile, number k, for which Bfirst moves aboveA in the societal rank. We call the voter k whose ballot change causes this to happen the pivotal voter for B over A. Note that the pivotal voter for B over A is not, a priori, the same as the pivotal voter for A over B. In part three of the proof we will show that these do turn out to be the same.
Also note that by IIA the same argument applies if profile 0 is any profile in which A is ranked above B by every voter, and the pivotal voter for B over A will still be voter k. We will use this observation below.
Part two: The pivotal voter for B over A is a dictator for B over C
In this part of the argument we refer to voter k, the pivotal voter for B over A, as the pivotal voter for simplicity. We will show that the pivotal voter dictates society's decision for B over C. That is, we show that no matter how the rest of society votes, if pivotal voter ranks B over C, then that is the societal outcome. Note again that the dictator for B over C is not a priori the same as that for C over B. In part three of the proof we will see that these turn out to be the same too.
In the following, we call voters 1 through k − 1, segment one, and voters k + 1 through N, segment two. To begin, suppose that the ballots are as follows:
Every voter in segment one ranks B above C and C above A.
Pivotal voter ranks A above B and B above C.
Every voter in segment two ranks A above B and B above C.
Then by the argument in part one (and the last observation in that part), the societal outcome must rank A above B. This is because, except for a repositioning of C, this profile is the same as profile k − 1 from part one. Furthermore, by unanimity the societal outcome must rank B above C. Therefore, we know the outcome in this case completely.
Now suppose that pivotal voter moves B above A, but keeps C in the same position and imagine that any number (even all!) of the other voters change their ballots to move B below C, without changing the position of A. Then aside from a repositioning of C this is the same as profile k from part one and hence the societal outcome ranks B above A. Furthermore, by IIA the societal outcome must rank A above C, as in the previous case. In particular, the societal outcome ranks B above C, even though Pivotal Voter may have been the only voter to rank B above C. By IIA, this conclusion holds independently of how A is positioned on the ballots, so pivotal voter is a dictator for B over C.
Part three: There exists a dictator
In this part of the argument we refer back to the original ordering of voters, and compare the positions of the different pivotal voters (identified by applying parts one and two to the other pairs of candidates). First, the pivotal voter for B over C must appear earlier (or at the same position) in the line than the dictator for B over C: As we consider the argument of part one applied to B and C, successively moving B to the top of voters' ballots, the pivot point where society ranks B above C must come at or before we reach the dictator for B over C. Likewise, reversing the roles of B and C, the pivotal voter for C over B must be at or later in line than the dictator for B over C. In short, if kX/Y denotes the position of the pivotal voter for X over Y (for any two candidates X and Y), then we have shown
kB/C ≤ kB/A ≤ kC/B.
Now repeating the entire argument above with B and C switched, we also have
kC/B ≤ kB/C.
Therefore, we have
kB/C = kB/A = kC/B
and the same argument for other pairs shows that all the pivotal voters (and hence all the dictators) occur at the same position in the list of voters. This voter is the dictator for the whole election.
Stronger versions
Arrow's impossibility theorem still holds if Pareto efficiency is weakened to the following condition:[4]
Non-imposition
For any two alternatives a and b, there exists some preference profile R1 , …, RN such that a is preferred to b by F(R1, R2, …, RN).
Interpretation and practical solutions
Arrow's theorem establishes that no ranked voting rule can always satisfy independence of irrelevant alternatives, but it says nothing about the frequency of spoilers. This led Arrow to remark that "Most systems are not going to work badly all of the time. All I proved is that all can work badly at times."[26][27]
Attempts at dealing with the effects of Arrow's theorem take one of two approaches: either accepting his rule and searching for the least spoiler-prone methods, or dropping one or more of his assumptions, such as by focusing on rated voting rules.[19]
The first set of methods studied by economists are the majority-rule, or Condorcet, methods. These rules limit spoilers to situations where majority rule is self-contradictory, called Condorcet cycles, and as a result uniquely minimize the possibility of a spoiler effect among ranked rules. (Indeed, many different social welfare functions can meet Arrow's conditions under such restrictions of the domain. It has been proven, however, that under any such restriction, if there exists any social welfare function that adheres to Arrow's criteria, then Condorcet method will adhere to Arrow's criteria.[9]) Condorcet believed voting rules should satisfy both independence of irrelevant alternatives and the majority rule principle, i.e. if most voters rank Alice ahead of Bob, Alice should defeat Bob in the election.[20]
Unfortunately, as Condorcet proved, this rule can be intransitive on some preference profiles.[28] Thus, Condorcet proved a weaker form of Arrow's impossibility theorem long before Arrow, under the stronger assumption that a voting system in the two-candidate case will agree with a simple majority vote.[20]
Unlike pluralitarian rules such as ranked-choice runoff (RCV) or first-preference plurality,[6]Condorcet methods avoid the spoiler effect in non-cyclic elections, where candidates can be chosen by majority rule. Political scientists have found such cycles to be fairly rare, suggesting they may be of limited practical concern.[11]Spatial voting models also suggest such paradoxes are likely to be infrequent[29][10] or even non-existent.[12]
More formally, Black's theorem assumes preferences are single-peaked: a voter's happiness with a candidate goes up and then down as the candidate moves along some spectrum. For example, in a group of friends choosing a volume setting for music, each friend would likely have their own ideal volume; as the volume gets progressively too loud or too quiet, they would be increasingly dissatisfied. If the domain is restricted to profiles where every individual has a single-peaked preference with respect to the linear ordering, then social preferences are acyclic. In this situation, Condorcet methods satisfy a wide variety of highly-desirable properties, including being fully spoilerproof.[12][13][9]
The Campbell-Kelly theorem shows that Condorcet methods are the most spoiler-resistant class of ranked voting systems: whenever it is possible for some ranked voting system to avoid a spoiler effect, a Condorcet method will do so.[9] In other words, replacing a ranked method with its Condorcet variant (i.e. elect a Condorcet winner if they exist, and otherwise run the method) will sometimes prevent a spoiler effect, but can never create a new one.[9]
In 1977, Ehud Kalai and Eitan Muller gave a full characterization of domain restrictions admitting a nondictatorial and strategyproof social welfare function. These correspond to preferences for which there is a Condorcet winner.[33]
Holliday and Pacuit devised a voting system that provably minimizes the number of candidates who are capable of spoiling an election, albeit at the cost of occasionally failing vote positivity (though at a much lower rate than seen in instant-runoff voting).[8][clarification needed]
As shown above, the proof of Arrow's theorem relies crucially on the assumption of ranked voting, and is not applicable to rated voting systems. This opens up the possibility of passing all of the criteria given by Arrow. These systems ask voters to rate candidates on a numerical scale (e.g. from 0–10), and then elect the candidate with the highest average (for score voting) or median (graduated majority judgment).[34]: 4–5
Because Arrow's theorem no longer applies, other results are required to determine whether rated methods are immune to the spoiler effect, and under what circumstances. Intuitively, cardinal information can only lead to such immunity if it's meaningful; simply providing cardinal data is not enough.[35]
Some rated systems, such as range voting and majority judgment, pass independence of irrelevant alternatives when the voters rate the candidates on an absolute scale. However, when they use relative scales, more general impossibility theorems show that the methods (within that context) still fail IIA.[36] As Arrow later suggested, relative ratings may provide more information than pure rankings,[37][38][39][40][41] but this information does not suffice to render the methods immune to spoilers.
While Arrow's theorem does not apply to graded systems, Gibbard's theorem still does: no voting game can be straightforward (i.e. have a single, clear, always-best strategy).[42]
Arrow's framework assumed individual and social preferences are orderings or rankings, i.e. statements about which outcomes are better or worse than others.[43] Taking inspiration from the strict behaviorism popular in psychology, some philosophers and economists rejected the idea of comparing internal human experiences of well-being.[44][19] Such philosophers claimed it was impossible to compare the strength of preferences across people who disagreed; Sen gives as an example that it would be impossible to know whether the Great Fire of Rome was good or bad, because despite killing thousands of Romans, it had the positive effect of letting Nero expand his palace.[39]
Arrow originally agreed with these positions and rejected cardinal utility, leading him to focus his theorem on preference rankings.[44][45] However, he later stated that cardinal methods can provide additional useful information, and that his theorem is not applicable to them.
Behavioral economists have shown individual irrationality involves violations of IIA (e.g. with decoy effects),[48] suggesting human behavior can cause IIA failures even if the voting method itself does not.[49] However, past research has typically found such effects to be fairly small,[50] and such psychological spoilers can appear regardless of electoral system. Balinski and Laraki discuss techniques of ballot design derived from psychometrics that minimize these psychological effects, such as asking voters to give each candidate a verbal grade (e.g. "bad", "neutral", "good", "excellent") and issuing instructions to voters that refer to their ballots as judgments of individual candidates.[34][page needed] Similar techniques are often discussed in the context of contingent valuation.[41]
Esoteric solutions
In addition to the above practical resolutions, there exist unusual (less-than-practical) situations where Arrow's requirement of IIA can be satisfied.
Supermajority rules
Supermajority rules can avoid Arrow's theorem at the cost of being poorly-decisive (i.e. frequently failing to return a result). In this case, a threshold that requires a majority for ordering 3 outcomes, for 4, etc. does not produce voting paradoxes.[51]
In spatial (n-dimensional ideology) models of voting, this can be relaxed to require only (roughly 64%) of the vote to prevent cycles, so long as the distribution of voters is well-behaved (quasiconcave).[52] These results provide some justification for the common requirement of a two-thirds majority for constitutional amendments, which is sufficient to prevent cyclic preferences in most situations.[52]
Infinite populations
Fishburn shows all of Arrow's conditions can be satisfied for uncountably infinite sets of voters given the axiom of choice;[53] however, Kirman and Sondermann demonstrated this requires disenfranchising almost all members of a society (eligible voters form a set of measure 0), leading them to refer to such societies as "invisible dictatorships".[54]
Common misconceptions
Arrow's theorem is not related to strategic voting, which does not appear in his framework,[3][1] though the theorem does have important implications for strategic voting (being used as a lemma to prove Gibbard's theorem[15]). The Arrovian framework of social welfare assumes all voter preferences are known and the only issue is in aggregating them.[1]
Monotonicity (called positive association by Arrow) is not a condition of Arrow's theorem.[3] This misconception is caused by a mistake by Arrow himself, who included the axiom in his original statement of the theorem but did not use it.[2] Dropping the assumption does not allow for constructing a social welfare function that meets his other conditions.[3]
Contrary to a common misconception, Arrow's theorem deals with the limited class of ranked-choice voting systems, rather than voting systems as a whole.[1][55]
^Borgers, Christoph (2010-01-01). Mathematics of Social Choice: Voting, Compensation, and Division. SIAM. ISBN9780898716955. Candidates C and D spoiled the election for B ... With them in the running, A won, whereas without them in the running, B would have won. ... Instant runoff voting ... does not do away with the spoiler problem entirely
^Borgers, Christoph (2010-01-01). Mathematics of Social Choice: Voting, Compensation, and Division. SIAM. ISBN9780898716955. Candidates C and D spoiled the election for B ... With them in the running, A won, whereas without them in the running, B would have won. ... Instant runoff voting ... does not do away with the spoiler problem entirely, although it unquestionably makes it less likely to occur in practice.
^ abcdHolliday, Wesley H.; Pacuit, Eric (2023-03-14). "Stable Voting". Constitutional Political Economy. 34 (3): 421–433. arXiv:2108.00542. doi:10.1007/s10602-022-09383-9. ISSN1572-9966. This is a kind of stability property of Condorcet winners: you cannot dislodge a Condorcet winner A by adding a new candidate B to the election if A beats B in a head-to-head majority vote. For example, although the 2000 U.S. Presidential Election in Florida did not use ranked ballots, it is plausible (see Magee 2003) that Al Gore (A) would have won without Ralph Nader (B) in the election, and Gore would have beaten Nader head-to-head. Thus, Gore should still have won with Nader included in the election.
^Hamlin, Aaron (25 May 2015). "CES Podcast with Dr Arrow". Center for Election Science. CES. Archived from the original on 27 October 2018. Retrieved 9 March 2023.
^ abBalinski, M. L.; Laraki, Rida (2010). Majority judgment: measuring, ranking, and electing. Cambridge, Mass: MIT Press. ISBN9780262545716.
^Morreau, Michael (2014-10-13). "Arrow's Theorem". Stanford Encyclopedia of Philosophy. Retrieved 2024-10-09. One important finding was that having cardinal utilities is not by itself enough to avoid an impossibility result. ... Intuitively speaking, to put information about preference strengths to good use it has to be possible to compare the strengths of different individuals' preferences.
^Maio, Gregory R.; Roese, Neal J.; Seligman, Clive; Katz, Albert (1 June 1996). "Rankings, Ratings, and the Measurement of Values: Evidence for the Superior Validity of Ratings". Basic and Applied Social Psychology. 18 (2): 171–181. doi:10.1207/s15324834basp1802_4. ISSN0197-3533. Many value researchers have assumed that rankings of values are more valid than ratings of values because rankings force participants to differentiate more incisively between similarly regarded values ... Results indicated that ratings tended to evidence greater validity than rankings within moderate and low-differentiating participants. In addition, the validity of ratings was greater than rankings overall.
Dr. Arrow: Now there’s another possible way of thinking about it, which is not included in my theorem. But we have some idea how strongly people feel. In other words, you might do something like saying each voter does not just give a ranking. But says, this is good. And this is not good[...] So this gives more information than simply what I have asked for.
^ abArrow, Kenneth et al. 1993. Report of the NOAA panel on Contingent Valuation.
^ ab"Modern economic theory has insisted on the ordinal concept of utility; that is, only orderings can be observed, and therefore no measurement of utility independent of these orderings has any significance. In the field of consumer's demand theory the ordinalist position turned out to create no problems; cardinal utility had no explanatory power above and beyond ordinal. Leibniz' Principle of the identity of indiscernibles demanded then the excision of cardinal utility from our thought patterns." Arrow (1967), as quoted on p. 33 by Racnchetti, Fabio (2002), "Choice without utility? Some reflections on the loose foundations of standard consumer theory", in Bianchi, Marina (ed.), The Active Consumer: Novelty and Surprise in Consumer Choice, Routledge Frontiers of Political Economy, vol. 20, Routledge, pp. 21–45
^Harsanyi, John C. (1955). "Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility". Journal of Political Economy. 63 (4): 309–321. doi:10.1086/257678. JSTOR1827128. S2CID222434288.
^Huber, Joel; Payne, John W.; Puto, Christopher (1982). "Adding Asymmetrically Dominated Alternatives: Violations of Regularity and the Similarity Hypothesis". Journal of Consumer Research. 9 (1): 90–98. doi:10.1086/208899. S2CID120998684.
^Huber, Joel; Payne, John W.; Puto, Christopher P. (2014). "Let's Be Honest About the Attraction Effect". Journal of Marketing Research. 51 (4): 520–525. doi:10.1509/jmr.14.0208. ISSN0022-2437. S2CID143974563.
^Fishburn, Peter Clingerman (1970). "Arrow's impossibility theorem: concise proof and infinite voters". Journal of Economic Theory. 2 (1): 103–106. doi:10.1016/0022-0531(70)90015-3.
^See Chapter 6 of Taylor, Alan D. (2005). Social choice and the mathematics of manipulation. New York: Cambridge University Press. ISBN978-0-521-00883-9 for a concise discussion of social choice for infinite societies.
Hansen, Paul (2002). "Another Graphical Proof of Arrow's Impossibility Theorem". The Journal of Economic Education. 33 (3): 217–235. doi:10.1080/00220480209595188. S2CID145127710.
Hunt, Earl (2007). The Mathematics of Behavior. Cambridge University Press. ISBN9780521850124.. The chapter "Defining Rationality: Personal and Group Decision Making" has a detailed discussion of the Arrow Theorem, with proof.
Lewis, Harold W. (1997). Why flip a coin? : The art and science of good decisions. John Wiley. ISBN0-471-29645-7. Gives explicit examples of preference rankings and apparently anomalous results under different electoral system. States but does not prove Arrow's theorem.