Braess's paradox

Braess's paradox is the observation that adding one or more roads to a road network can slow down overall traffic flow through it. The paradox was first discovered by Arthur Pigou in 1920,[1] and later named after the German mathematician Dietrich Braess in 1968.[2]

The paradox may have analogies in electrical power grids and biological systems. It has been suggested that, in theory, the improvement of a malfunctioning network could be accomplished by removing certain parts of it. The paradox has been used to explain instances of improved traffic flow when existing major roads are closed.

Discovery and definition

Dietrich Braess, a mathematician at Ruhr University, Germany, noticed the flow in a road network could be impeded by adding a new road, when he was working on traffic modelling. His idea was that if each driver is making the optimal self-interested decision as to which route is quickest, a shortcut could be chosen too often for drivers to have the shortest travel times possible. More formally, the idea behind Braess's discovery is that the Nash equilibrium may not equate with the best overall flow through a network.[3]

The paradox is stated as follows:

"For each point of a road network, let there be given the number of cars starting from it and the destination of the cars. Under these conditions, one wishes to estimate the distribution of traffic flow. Whether one street is preferable to another depends not only on the quality of the road, but also on the density of the flow. If every driver takes the path that looks most favourable to them, the resultant running times need not be minimal. Furthermore, it is indicated by an example that an extension of the road network may cause a redistribution of the traffic that results in longer individual running times."

Adding extra capacity to a network when the moving entities selfishly choose their route can in some cases reduce overall performance. That is because the Nash equilibrium of such a system is not necessarily optimal. The network change induces a new game structure which leads to a (multiplayer) prisoner's dilemma. In a Nash equilibrium, drivers have no incentive to change their routes. While the system is not in a Nash equilibrium, individual drivers are able to improve their respective travel times by changing the routes they take. In the case of Braess's paradox, drivers will continue to switch until they reach Nash equilibrium despite the reduction in overall performance.

If the latency functions are linear, adding an edge can never make total travel time at equilibrium worse by a factor of more than 4/3.[4]

Possible instances of the paradox in action

Prevalence

In 1983, Steinberg and Zangwill provided, under reasonable[third-party source needed] assumptions, the necessary and sufficient conditions for Braess's paradox to occur in a general transportation network when a new route is added. (Note that their result applies to the addition of any new route, not just to the case of adding a single link.) As a corollary, they obtain that Braess's paradox is about as likely to occur as not occur when a random new route is added.[5]

Traffic

When a motorway in Seoul was removed so a creek could be restored, traffic flow in the area improved

Braess's paradox has a counterpart in case of a reduction of the road network, which may cause a reduction of individual commuting time.[6]

In Seoul, South Korea, traffic around the city sped up when a motorway was removed as part of the Cheonggyecheon restoration project.[7] In Stuttgart, Germany, after investments into the road network in 1969, the traffic situation did not improve until a section of newly built road was closed for traffic again.[8] In 1990 the temporary closing of 42nd Street in Manhattan, New York City, for Earth Day reduced the amount of congestion in the area.[9] In 2008 Youn, Gastner and Jeong demonstrated specific routes in Boston, New York City and London where that might actually occur and pointed out roads that could be closed to reduce predicted travel times.[10] In 2009, New York experimented with closures of Broadway at Times Square and Herald Square, which resulted in improved traffic flow and permanent pedestrian plazas.[11]

In 2012, Paul Lecroart, of the institute of planning and development of the Île-de-France, wrote that "Despite initial fears, the removal of main roads does not cause deterioration of traffic conditions beyond the starting adjustments. The traffic transfer are limited and below expectations".[6] He also notes that some private vehicle trips (and related economic activity) are not transferred to public transport and simply disappear ("evaporate").[6]

The same phenomenon was also observed when road closing was not part of an urban project but the consequence of an accident. In 2012 in Rouen, a bridge was destroyed by fire. Over the next two years, other bridges were used more, but the total number of cars crossing bridges was reduced.[6]

Electricity

In 2012, scientists at the Max Planck Institute for Dynamics and Self-Organization demonstrated, through computational modelling, the potential for the phenomenon to occur in power transmission networks where power generation is decentralized.[12]

In 2012, an international team of researchers from Institut Néel (CNRS, France), INP (France), IEMN (CNRS, France) and UCL (Belgium) published in Physical Review Letters[13] a paper showing that Braess's paradox may occur in mesoscopic electron systems. In particular, they showed that adding a path for electrons in a nanoscopic network paradoxically reduced its conductance. That was shown both by simulations as well as experiments at low temperature using scanning gate microscopy.

Springs

On the right are two springs joined in series by a short rope. When the short rope connecting B and C is removed (left), the weight hangs higher.

A model with springs and ropes can show that a hung weight can rise in height despite a taut rope in the hanging system being cut, and follows from the same mathematical structure as the original Braess's paradox.[14]

For two identical springs joined in series by a short rope, their total spring constant is half of each individual spring, resulting in a long stretch when a certain weight is hung. This remains the case as we add two longer ropes in slack to connect the lower end of the upper spring to the hung weight (lower end of the lower spring), and the upper end of the lower spring to the hanging point (upper end of the upper spring). However, when the short rope is cut, the longer ropes become taut, and the two springs become parallel (in the mechanical sense) to each other. The total spring constant is twice that of each individual spring, and when the length of the long ropes is not too long, the hung weight will actually be higher compared to before the short rope was cut.

The fact that the hung weight rises despite cutting a taut rope (the short rope) in the hanging system is counter-intuitive, but it does follow from Hooke's law and the way springs work in series and in parallel.

Biology

Adilson E. Motter and collaborators demonstrated that Braess's paradox outcomes may often occur in biological and ecological systems.[15] Motter suggests removing part of a perturbed network could rescue it. For resource management of endangered species food webs, in which extinction of many species might follow sequentially, selective removal of a doomed species from the network could in principle bring about the positive outcome of preventing a series of further extinctions.[16]

Team sports strategy

It has been suggested that in basketball, a team can be seen as a network of possibilities for a route to scoring a basket, with a different efficiency for each pathway, and a star player could reduce the overall efficiency of the team, analogous to a shortcut that is overused increasing the overall times for a journey through a road network. A proposed solution for maximum efficiency in scoring is for a star player to shoot about the same number of shots as teammates. However, this approach is not supported by hard statistical evidence, as noted in the original paper.[17]

Blockchain networks

Braess's paradox has been shown to appear in blockchain payment channel networks, also known as layer-2 networks.[18] Payment channel networks implement a solution to the scalability problem of blockchain networks, allowing transactions of high rates without recording them on the blockchain. In such a network, users can establish a channel by locking funds on each side of the channel. Transactions are executed either through a channel connecting directly the payer and payee or through a path of channels with intermediate users that ask for some fees.

While intuitively, opening new channels allows higher routing flexibility, adding a new channel might cause higher fees, and similarly closing existing channels might decrease fees. The paper presented a theoretical analysis with conditions for the paradox, methods for mitigating the paradox as well as an empirical analysis, showing the appearance in practice of the paradox and its effects on Bitcoin's Lightning network.

Mathematical approach

Example

Consider a road network as shown in the adjacent diagram on which 4000 drivers wish to travel from point Start to End. The travel time in minutes on the Start–A road is the number of travellers (T) divided by 100, and on Start–B is a constant 45 minutes (likewise with the roads across from them). If the dashed road does not exist (so the traffic network has 4 roads in total), the time needed to drive Start–A–End route with drivers would be . The time needed to drive the Start–B–End route with drivers would be . As there are 4000 drivers, the fact that can be used to derive the fact that when the system is at equilibrium. Therefore, each route takes minutes. If either route took less time, it would not be a Nash equilibrium: a rational driver would switch from the longer route to the shorter route.

Now suppose the dashed line A–B is a road with an extremely short travel time of approximately 0 minutes. Suppose that the road is opened and one driver tries Start–A–B–End. To his surprise he finds that his time is minutes, a saving of almost 25 minutes. Soon, more of the 4000 drivers are trying this new route. The time taken rises from 40.01 and keeps climbing. When the number of drivers trying the new route reaches 2500, with 1500 still in the Start–B–End route, their time will be minutes, which is no improvement over the original route. Meanwhile, those 1500 drivers have been slowed to minutes, a 20-minute increase. They are obliged to switch to the new route via A too, so it now takes minutes. Nobody has any incentive to travel A-End or Start-B because any driver trying them will take 85 minutes. Thus, the opening of the cross route triggers an irreversible change to it by everyone, costing everyone 80 minutes instead of the original 65. If every driver were to agree not to use the A–B path, or if that route were closed, every driver would benefit by a 15-minute reduction in travel time.

Existence of an equilibrium

If one assumes the travel time for each person driving on an edge to be equal, an equilibrium will always exist.

Let be the formula for the travel time of each person traveling along edge when people take that edge. Suppose there is a traffic graph with people driving along edge . Let the energy of , , be

(If let ). Let the total energy of the traffic graph be the sum of the energies of every edge in the graph.

Take a choice of routes that minimizes the total energy. Such a choice must exist because there are finitely many choices of routes. That will be an equilibrium.

Assume, for contradiction, this is not the case. Then, there is at least one driver who can switch the route and improve the travel time. Suppose the original route is while the new route is . Let be total energy of the traffic graph, and consider what happens when the route is removed. The energy of each edge will be reduced by and so the will be reduced by . That is simply the total travel time needed to take the original route. If the new route is then added, , the total energy will be increased by the total travel time needed to take the new route. Because the new route is shorter than the original route, must decrease relative to the original configuration, contradicting the assumption that the original set of routes minimized the total energy.

Therefore, the choice of routes minimizing total energy is an equilibrium.

Finding an equilibrium

The above proof outlines a procedure known as best response dynamics, which finds an equilibrium for a linear traffic graph and terminates in a finite number of steps. The algorithm is termed "best response" because at each step of the algorithm, if the graph is not at equilibrium then some driver has a best response to the strategies of all other drivers and switches to that response.

Pseudocode for Best Response Dynamics:

Let P be some traffic pattern.
while P is not at equilibrium:
    compute the potential energy e of P
    for each driver d in P:
        for each alternate path p available to d:
            compute the potential energy n of the pattern when d takes path p
            if n < e:
                modify P so that d takes path p
continue the topmost while

At each step, if some particular driver could do better by taking an alternate path (a "best response"), doing so strictly decreases the energy of the graph. If no driver has a best response, the graph is at equilibrium. Since the energy of the graph strictly decreases with each step, the best response dynamics algorithm must eventually halt.

How far from optimal is traffic at equilibrium?

If the travel time functions are linear, that is for some , then at worst, traffic in the energy-minimizing equilibrium is twice as bad as socially optimal.[19]

Proof: Let be some traffic configuration, with associated energy and total travel time . For each edge, the energy is the sum of an arithmetic progression, and using the formula for the sum of an arithmetic progression, one can show that . If is the socially-optimal traffic flow and is the energy-minimizing traffic flow, the inequality implies that .

Thus, the total travel time for the energy-minimizing equilibrium is at most twice as bad as for the optimal flow.

Effect of network topology

Mlichtaich[20] proved that Braess's paradox may occur if and only if the network is not a series-parallel graph.

See also

References

  1. ^ Pigou, Arthur Cecil (24 October 2017), "Welfare and Economic Welfare", The Economics of Welfare, Routledge, pp. 3–22, doi:10.4324/9781351304368-1, ISBN 978-1-351-30436-8, retrieved 24 March 2023
  2. ^ Braess, D. (December 1968). "Über ein Paradoxon aus der Verkehrsplanung". Unternehmensforschung Operations Research - Recherche Opérationnelle. 12 (1): 258–268. doi:10.1007/bf01918335. ISSN 0340-9422. S2CID 39202189.
  3. ^ New Scientist, 42nd St Paradox: Cull the best to make things better, 16 January 2014 by Justin Mullins
  4. ^ Roughgarden, Tim; Tardos, Éva. "How Bad is Selfish Routing?" (PDF). Journal of the ACM. Archived (PDF) from the original on 9 April 2016. Retrieved 18 July 2016.
  5. ^ Steinberg, R.; Zangwill, W. I. (1983). "The Prevalence of Braess' Paradox". Transportation Science. 17 (3): 301. doi:10.1287/trsc.17.3.301.
  6. ^ a b c d (in French) Olivier Razemon, "Le paradoxde de l'« évaporation » du trafic automobile", Le Monde, Thursday 25 August 2016, page 5. Published on-line as "Quand les voitures s’évaporent" on 24 August 2016 and updated on 25 August 2016 (page visited on 3 August 2023).
  7. ^ Easley, D.; Kleinberg, J. (2008). Networks. Cornell Store Press. p. 71.
  8. ^ Knödel, W. (31 January 1969). Graphentheoretische Methoden Und Ihre Anwendungen. Springer-Verlag. pp. 57–59. ISBN 978-3-540-04668-4.
  9. ^ Kolata, Gina (25 December 1990). "What if They Closed 42d Street and Nobody Noticed?". New York Times. Retrieved 16 November 2008.
  10. ^ Youn, Hyejin; Gastner, Michael; Jeong, Hawoong (2008). "Price of Anarchy in Transportation Networks: Efficiency and Optimality Control". Physical Review Letters. 101 (12): 128701. arXiv:0712.1598. Bibcode:2008PhRvL.101l8701Y. doi:10.1103/PhysRevLett.101.128701. ISSN 0031-9007. PMID 18851419. S2CID 20779255.
  11. ^ Boyd, Andrew. "Braess' Paradox". Engines of Our Ingenuity. Episode 2814.
  12. ^ Staff (Max Planck Institute) (14 September 2012), "Study: Solar and wind energy may stabilize the power grid", R&D Magazine, rdmag.com, retrieved 14 September 2012
  13. ^ Pala, M. G.; Baltazar, S.; Liu, P.; Sellier, H.; Hackens, B.; Martins, F.; Bayot, V.; Wallart, X.; Desplanque, L.; Huant, S. (2012) [6 Dec 2011 (v1)]. "Transport Inefficiency in Branched-Out Mesoscopic Networks: An Analog of the Braess Paradox". Physical Review Letters. 108 (7): 076802. arXiv:1112.1170. Bibcode:2012PhRvL.108g6802P. doi:10.1103/PhysRevLett.108.076802. ISSN 0031-9007. PMID 22401236. S2CID 23243934.
  14. ^ Mould, Steve (29 July 2021). "The Spring Paradox". YouTube. Retrieved 2 December 2022.
  15. ^ Motter, Adilson E. (2010). "Improved network performance via antagonism: From synthetic rescues to multi-drug combinations". BioEssays. 32 (3): 236–245. arXiv:1003.3391. doi:10.1002/bies.200900128. PMC 2841822. PMID 20127700.
  16. ^ Sahasrabudhe S., Motter A. E., Rescuing ecosystems from extinction cascades through compensatory perturbations, Nature Communications 2, 170 (2011)
  17. ^ Skinner, Brian; Gastner, Michael T; Jeong, Hawoong (2009). "The price of anarchy in basketball". Journal of Quantitative Analysis in Sports. 6 (1). arXiv:0908.1801. Bibcode:2009arXiv0908.1801S. CiteSeerX 10.1.1.215.1658. doi:10.2202/1559-0410.1217. S2CID 119275142.
  18. ^ Kotzer, Arad; Rottenstreich, Ori (2023). "Braess Paradox in Layer-2 Blockchain Payment Networks". 2023 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). pp. 1–9. doi:10.1109/ICBC56567.2023.10174986. ISBN 979-8-3503-1019-1.
  19. ^ Easley, David; Kleinberg, Jon. "Networks, Crowds, and Markets: Reasoning about a Highly Connected World (8.3 Advanced Material: The Social Cost of Traffic at Equilibrium)" (PDF). Jon Kleinberg's Homepage. Jon Kleinberg. Archived (PDF) from the original on 16 March 2015. Retrieved 30 May 2015. – This is the preprint of ISBN 9780521195331
  20. ^ Milchtaich, Igal (1 November 2006). "Network topology and the efficiency of equilibrium". Games and Economic Behavior. 57 (2): 321–346. doi:10.1016/j.geb.2005.09.005. hdl:10419/259308. ISSN 0899-8256.

Further reading

Read other articles:

Disambiguazione – Se stai cercando altri significati, vedi California (disambigua). Californiastato federato(EN) State of California (dettagli) (dettagli) California – VedutaParco nazionale di Yosemite LocalizzazioneStato Stati Uniti AmministrazioneCapoluogoSacramento GovernatoreGavin Newsom (D) dal 2019 Data di istituzione9 settembre 1850 TerritorioCoordinatedel capoluogo38°33′20″N 121°28′08″W / 38.555556°N 121.468889°W38.555556; -121.468889�...

 

 

Kenta Mukuhara Informasi pribadiNama lengkap Kenta MukuharaTanggal lahir 6 Juli 1989 (umur 34)Tempat lahir Tokyo, JepangPosisi bermain BekKarier senior*Tahun Tim Tampil (Gol)2008-2014 FC Tokyo 2013 →Cerezo Osaka 2015- Cerezo Osaka * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Kenta Mukuhara (lahir 6 Juli 1989) adalah pemain sepak bola asal Jepang. Karier Kenta Mukuhara pernah bermain untuk FC Tokyo dan Cerezo Osaka. Pranala luar (Jepang) Profil dan statistik di...

 

 

Katedral Maronit BeirutGereja Katedral Katolik Maronit Santo Georgius di BeirutArab: كاتدرائية مار جرجس للموارنةcode: ar is deprecated Katedral Maronit BeirutLokasiBeirutNegara LebanonDenominasiGereja Katolik Roma (sui iuris: Gereja Maronit)SejarahDedikasiSanto GeorgiusArsitekturArsitekGiuseppe MaggiorePeletakan batu pertama1884Selesai1894AdministrasiKeuskupan AgungEparki Agung Beirut Katedral Katolik Maronit Santo Georgius, Beirut (Arab: كاتدرائية مار...

American legislative district Legislative district in Arizona, United States Arizona's 19th legislative districtMap of District 19: Approved January 21, 2022SenatorDavid Gowan (R)House membersGail Griffin (R)Lupe Diaz (R)Registration41.99% Republican24.97% Democratic33.04% OtherDemographics61% White3% Black/African American2% Native American3% Asian29% HispanicPopulation230,476Voting-age population182,745Registered voters146,048 Arizona's 19th legislati...

 

 

Russian cargo spacecraft Progress M-25MTraveling at 420 km over the Atlantic Ocean,the Russian cargo ship docking to the Pirs module.Mission typeISS resupplyOperatorRoskosmosCOSPAR ID2014-067A SATCAT no.40292Mission duration178 days Spacecraft propertiesSpacecraft typeProgress-M s/n 425ManufacturerRKK EnergiaLaunch mass7290 kg Start of missionLaunch date29 October 2014,07:09:43 UTC[1]RocketSoyuz-2.1aLaunch siteBaikonur, Site 31/6 End of missionDisposalDeorbitedDecay date26 April 2015,...

 

 

Globo Comunicação e Participações S.A.JenisSwastaIndustriKonglomerat mediaDidirikan2000PendiriIrineu MarinhoRoberto MarinhoKantorpusatRio de Janeiro, RJ, BrasilWilayah operasiSeluruh duniaProdukJaringan televisiStasiun radioJasa internetTelevisi satelitKoranMajalahIndustri musikPendapatan AS$ 7,2 miliar (R$ 14,635 miliar) (2013)[1][2][3]Laba bersih AS$ 1,4 miliar (2012)[4]Karyawan7.500AnakusahaRede Globo, Globo.comSitus webGrupo Globo Grupo Globo (sebelumny...

Pour les articles homonymes, voir Bataille de Changsha. Cet article est une ébauche concernant un conflit armé. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. Bataille de Changsha Quelques mois avant la bataille, la ville fut pratiquement rasée par les incendies de 1938 causés par les bombardements nippons et la tactique de terre brûlée de...

 

 

Diagramme circulaire des Six Âges du Monde, manuscrit enluminé d'origine espagnole, Bibliothèque britannique. Les six âges du monde sont un découpage de l'histoire du monde proposé par Augustin d'Hippone dans son De catechizandis rudibus (parfois traduit par Catéchèse des débutants, Première catéchèse ou Traité du catéchisme) et suivi par la plupart des historiens chrétiens du Moyen Âge. Il postule l'existence de six âges ayant duré chacun 1 000 ans à partir de la...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

Indian activist (born 1965) Snehlata NathBorn27 December 1965NationalityIndian Snehlata Nath (born 27 December 1965) is an Indian activist known for her work with the Nilgiris. She is a recipient of the Jamnalal Bajaj Award and the Nari Shakti Puraskar. Biography Nath was born in 1965.[1] She was a founding director of Keystone Foundation which started in 1993.[1] The foundation decided to tackle poverty and the Nilgiris people were an obvious target. She could have tried to o...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوق بها. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. (ديسمبر 2022) تحتاج هذه المقالة كاملةً أو أجزاءً منها إلى تدقيق لغوي أو نحوي. فضلً�...

Part of a series onTransgender topics      OutlineHistoryTimeline Gender identities Androgyne Bissu, Calabai, Calalai Burrnesha Cisgender Gender bender Hijra Non-binary or genderqueer Gender fluidity Kathoey Koekchuch Third gender Bakla Faʻafafine Femminiello Khanith Māhū Mudoko dako Mukhannath Muxe Travesti Two-spirit Winkte X-gender Trans man Trans woman Fakaleitī Mak nyah Rae-rae Transgender Youth Akava'ine Transsexual Health care practices Gender clinic Gende...

 

 

Sporting event delegationBenin at the2013 World Aquatics ChampionshipsFlag of BeninFINA codeBENNational federationBenin Swimming Federationin Barcelona, SpainCompetitors3 in 1 sportsMedalsRanked -th Gold 0 Silver 0 Bronze 0 Total 0 World Aquatics Championships appearances197319751978198219861991199419982001200320052007200920112013201520172019202220232024 Benin competed at the 2013 World Aquatics Championships in Barcelona, Spain from 19 July to 4 August 2013. Swimming Main article: Swimming a...

 

 

Class of protein kinase enzymes Protein-serine/threonine kinasesHuman Aurora Kinase PDB 1mq4[1]IdentifiersEC no.2.7.11.-CAS no.9026-43-1 DatabasesIntEnzIntEnz viewBRENDABRENDA entryExPASyNiceZyme viewKEGGKEGG entryMetaCycmetabolic pathwayPRIAMprofilePDB structuresRCSB PDB PDBe PDBsumGene OntologyAmiGO / QuickGOSearchPMCarticlesPubMedarticlesNCBIproteins serine threonine phosphate phosphoserine A serine/threonine protein kinase (EC 2.7.11.-) is a kinase enzyme, in particular a protein ...

Fasilitas produksi dan penyimpanan biogas di Neuhaus an der Oste, sebuah pemukiman di Lower Saxony, Jerman Biogas merupakan gas yang dihasilkan oleh aktivitas anaerobik yang mendegradasi bahan-bahan organik.[1] Contoh dari bahan organik ini adalah kotoran, limbah domestik, mikroalga beserta residunya[2], atau setiap limbah organik yang dapat diurai oleh makhluk hidup dalam kondisi anaerobik.[3] Kandungan utama dalam biogas adalah metana dan karbon dioksida.[4] ...

 

 

Hornbill Skyways IATA ICAO Kode panggil - - - Didirikan1977PenghubungBandar Udara Internasional KuchingPenghubung sekunderBandar Udara MiriArmada14SloganService with a SmileKantor pusatKuching, SarawakTokoh utamaDatuk Aidan Wing (Presiden Direktur) , Indra Utama Kamaroedin (Direktur Teknik) , Hassan Suman (Direktur Operasi Penerbangan), Juita Akaw (Direktur Personalia), Hj Othman Anggas (Senior Licensed Aircraft Engineer)Situs webhttp://www.hornbillskyways.com Hornbill Skyways adalah maskapai...

 

 

Association football match Football match2022 UEFA Champions League finalMatch programme coverEvent2021–22 UEFA Champions League Liverpool Real Madrid 0 1 Date28 May 2022 (2022-05-28)VenueStade de France, Saint-DenisMan of the MatchThibaut Courtois (Real Madrid)[1]RefereeClément Turpin (France)[2]Attendance75,000[3]WeatherPartly cloudy night18 °C (64 °F)45% humidity[4]← 2021 2023 → The 2022 UEFA Champions League final w...

Medal of Freedom redirects here. For other uses, see Medal of Freedom (disambiguation). Joint-highest civilian award of the US AwardPresidential Medal of FreedomThe award's miniature medalTypeCivilian awardAwarded forAny reason as determined by the president[1]CountryUnited StatesPresented byPresident of the United StatesFirst awardedDecember 6, 1963 (December 6, 1963)[2]Total recipients652 (an average of fewer than 11 per year since 1963) Service ribbons of the award(at ...

 

 

Не следует путать с «Добровольным социализмом» — книгой американского анархо-индивидуалиста Фрэнсиса Дэшвуда Тэнди. В статье не хватает ссылок на источники (см. рекомендации по поиску). Информация должна быть проверяема, иначе она может быть удалена. Вы можете отреда...