Correlated equilibrium

Correlated equilibrium
Solution concept in game theory
Relationship
Superset ofNash equilibrium
Significance
Proposed byRobert Aumann
ExampleChicken

In game theory, a correlated equilibrium is a solution concept that is more general than the well known Nash equilibrium. It was first discussed by mathematician Robert Aumann in 1974.[1][2] The idea is that each player chooses their action according to their private observation of the value of the same public signal. A strategy assigns an action to every possible observation a player can make. If no player would want to deviate from their strategy (assuming the others also don't deviate), the distribution from which the signals are drawn is called a correlated equilibrium.

Formal definition

An -player strategic game is characterized by an action set and utility function for each player . When player chooses strategy and the remaining players choose a strategy profile described by the -tuple , then player 's utility is .

A strategy modification for player is a function . That is, tells player to modify his behavior by playing action when instructed to play .

Let be a countable probability space. For each player , let be his information partition, be 's posterior and let , assigning the same value to states in the same cell of 's information partition. Then is a correlated equilibrium of the strategic game if for every player and for every strategy modification :

In other words, is a correlated equilibrium if no player can improve his or her expected utility via a strategy modification.

An example

Dare Chicken out
Dare 0, 0 7, 2
Chicken out 2, 7 6, 6
A game of Chicken

Consider the game of chicken pictured. In this game two individuals are challenging each other to a contest where each can either dare or chicken out. If one is going to dare, it is better for the other to chicken out. But if one is going to chicken out, it is better for the other to dare. This leads to an interesting situation where each wants to dare, but only if the other might chicken out.

In this game, there are three Nash equilibria. The two pure strategy Nash equilibria are (D, C) and (C, D). There is also a mixed strategy equilibrium where both players chicken out with probability 2/3.

Now consider a third party (or some natural event) that draws one of three cards labeled: (C, C), (D, C), and (C, D), with the same probability, i.e. probability 1/3 for each card. After drawing the card the third party informs the players of the strategy assigned to them on the card (but not the strategy assigned to their opponent). Suppose a player is assigned D, they would not want to deviate supposing the other player played their assigned strategy since they will get 7 (the highest payoff possible). Suppose a player is assigned C. Then the other player will play C with probability 1/2 and D with probability 1/2. The expected utility of Daring is 7(1/2) + 0(1/2) = 3.5 and the expected utility of chickening out is 2(1/2) + 6(1/2) = 4. So, the player would prefer chickening out.

Since neither player has an incentive to deviate, this is a correlated equilibrium. The expected payoff for this equilibrium is 7(1/3) + 2(1/3) + 6(1/3) = 5 which is higher than the expected payoff of the mixed strategy Nash equilibrium.

The following correlated equilibrium has an even higher payoff to both players: Recommend (C, C) with probability 1/2, and (D, C) and (C, D) with probability 1/4 each. Then when a player is recommended to play C, they know that the other player will play D with (conditional) probability 1/3 and C with probability 2/3, and gets expected payoff 14/3, which is equal to (not less than) the expected payoff when they play D. In this correlated equilibrium, both players get 5.25 in expectation. It can be shown that this is the correlated equilibrium with maximal sum of expected payoffs to the two players.

Learning correlated equilibria

One of the advantages of correlated equilibria is that they are computationally less expensive than Nash equilibria. This can be captured by the fact that computing a correlated equilibrium only requires solving a linear program whereas solving a Nash equilibrium requires finding its fixed point completely.[3] Another way of seeing this is that it is possible for two players to respond to each other's historical plays of a game and end up converging to a correlated equilibrium.[4]

References

  1. ^ Aumann, Robert (1974). "Subjectivity and correlation in randomized strategies". Journal of Mathematical Economics. 1 (1): 67–96. CiteSeerX 10.1.1.120.1740. doi:10.1016/0304-4068(74)90037-8.
  2. ^ Aumann, Robert (1987). "Correlated Equilibrium as an Expression of Bayesian Rationality". Econometrica. 55 (1): 1–18. CiteSeerX 10.1.1.295.4243. doi:10.2307/1911154. JSTOR 1911154. S2CID 18649722.
  3. ^ Papadimitriou, Christos H.; Roughgarden, Tim (2008). "Computing correlated equilibria in multi-player games". J. ACM. 55 (3): 14:1–14:29. CiteSeerX 10.1.1.335.2634. doi:10.1145/1379759.1379762. S2CID 53224027.
  4. ^ Foster, Dean P.; Vohra, Rakesh V. (1996). "Calibrated Learning and Correlated Equilibrium". Games and Economic Behavior.

Sources

Read other articles:

Geneva BibleGeneva Bible 1560 editionNama lengkapGeneva BibleSingkatanGENTerbitan PB1557Terbitanlengkap1560Naskah sumberTextus ReceptusAfiliasi agamaProtestantKejadian 1:1–3 In the beginning God created the heaven and the earth. And the earth was without forme and voyde, and darkeness was upon the depe, and the Spirit of God moved upon the waters. Then God said, Let there be light and there was light.Terjemahan Kejadian 1:1–3 lainnya Yohanes 3:16 For God so loved the world, that he h...

 

 

Piala Super Italia 2018Kota Olahraga Raja Abdullah di Jeddah menjadi tuan rumah pertandinganTurnamenPiala Super Italia Juventus Milan Serie A Piala Italia 1 0 Tanggal16 Januari 2019StadionKota Olahraga Raja Abdullah, Jeddah, Arab SaudiWasitLuca BantiPenonton61,235← 2017 2019 → Piala Super Italia 2018 adalah edisi ke-31 dari Piala Super Italia, Piala super sepak bola Italia. Itu dimainkan pada 16 Januari 2019 di King Abdullah Sports City di Jeddah, Arab Saudi.[1] Dengan Juv...

 

 

Untuk film Indonesia, lihat Buah Terlarang. Penggambaran dosa asal karya Pieter Paul Rubens Buah terlarang adalah sebuah frasa yang berasal dari Kitab Kejadian tentang Adam dan Hawa dalam Kejadian 2:16–17. Dalam naratif tersebut, buah baik dan jahat dimakan oleh Adam dan Hawa di Taman Eden, yang merupakan tindakan yang dilarang oleh Allah. Secara kiasan, frasa tersebut biasanya merujuk kepada buah perbuatan yang tidak sah dan tidak bermoral. Allah berfirman dalam (QS al-Baqarah: 35) yang ar...

Michael FassbenderFassbender tahun 2015Lahir02 April 1977 (umur 47)Heidelberg, West GermanyPekerjaanAktorTahun aktif2001–sekarangSuami/istriAlicia Vikander ​(m. 2017)​Anak1 Michael Fassbender (lahir 2 April 1977) adalah aktor asal Jerman dan Irlandia. Dia adalah penerima berbagai penghargaan, termasuk nominasi untuk dua Academy Awards, empat BAFTA Awards dan tiga Golden Globe Awards. Pada tahun 2020, ia terdaftar di nomor sembilan dalam daftar aktor f...

 

 

Cet article est une ébauche concernant un scénariste et un réalisateur italien. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les conventions filmographiques. Giorgio DirittiBiographieNaissance 21 décembre 1959 (64 ans)BologneNationalité italienneActivités Scénariste, réalisateur, monteur, producteur de cinémamodifier - modifier le code - modifier Wikidata Giorgio Diritti (né le 21 décembre 1959 à Bologne, en Émilie-Romagne) est un réalis...

 

 

Willard Van Orman QuineLahir(1908-06-25)25 Juni 1908Akron, OhioMeninggal25 Desember 2000(2000-12-25) (umur 92)Boston, MassachusettsEraFilsafat abad ke-20KawasanFilsafat BaratAliranAnalitik Penghargaan Kyoto Prize dalam Seni dan Filsafat 1996 Minat utamaLogika, ontologi, epistemologi, filsafat bahasa, filsafat matematika, filsafat ilmu, Teori himpunanGagasan pentingNew Foundations, Indeterminansi penerjemahan, Naturalized epistemology, Ontological relativity, Quine's paradox, T...

Apocryphal book of apostolic acts This article is missing information about scholarly evaluation of the historical accuracy of the text. Please expand the article to include this information. Further details may exist on the talk page. (January 2020) Not to be confused with Gospel of Thomas. Acts of ThomasEastern icon of Thomas the ApostleInformationReligionChristianityAuthorUnknown, sometimes ascribed to Leucius CharinusLanguageSyriac, GreekPeriodEarly Christianity   Part of a series on...

 

 

Miyagino 宮城野区Distrik kotaKantor Distrik MiyaginoLokasi Distrik Miyagino di wilayah SendaiNegaraJepangWilayahTōhokuPrefektur MiyagiKotaSendaiDidirikan1 April 1989Luas[1] • Total58,19 km2 (22,47 sq mi)Populasi (1 Desember 2023) • Total194,478 • Kepadatan3.342,12/km2 (8,656,1/sq mi)Zona waktuUTC+09:00 (JST)Kode pos983-8601Alamat kantor distrik2-12-35 Gorin, Miyagino-ku, Sendai-shi, Miyagi-kenNomor telefon022-291-2...

 

 

穆罕默德·达乌德汗سردار محمد داود خان‎ 阿富汗共和國第1任總統任期1973年7月17日—1978年4月28日前任穆罕默德·查希爾·沙阿(阿富汗國王)继任穆罕默德·塔拉基(阿富汗民主共和國革命委員會主席團主席) 阿富汗王國首相任期1953年9月7日—1963年3月10日君主穆罕默德·查希爾·沙阿 个人资料出生(1909-07-18)1909年7月18日 阿富汗王國喀布尔逝世1978年4月28日(...

School in Chicago, Illinois, United StatesA.N. Pritzker Elementary SchoolAddress2009 West Schiller StreetChicago, Illinois 60622United StatesCoordinates41°54′25.04″N 87°40′40.37″W / 41.9069556°N 87.6778806°W / 41.9069556; -87.6778806InformationTypemagnet elementary school, neighborhood school, gifted schoolMottoThe Magic Lies WithinOversightChicago Public SchoolsPrincipalDr. Joenile S. Albert-ReeseGradesK-8GenderCo-edNumber of students625Campus typeUrbanCol...

 

 

Paperback imprint of HarperCollins Publishers This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Harper Perennial – news · newspapers · books · scholar · JSTOR (July 2011) (Learn how and when to remove this message) Harper PerennialParent companyHarperCollinsFounded1964Country of originUnited StatesHeadquarters locationNew York City, New YorkPublication ty...

 

 

Lower house of the Illinois General Assembly Illinois House of RepresentativesIllinois General AssemblyTypeTypeLower house Term limitsNoneHistoryNew session startedJanuary 11, 2023LeadershipSpeakerChris Welch (D) since January 13, 2021 Speaker pro temporeJehan Gordon-Booth (D) since January 21, 2021 Majority LeaderRobyn Gabel (D) since January 12, 2023 Minority LeaderTony McCombie (R) since January 11, 2023 StructureSeats118Political groupsMajority   Democratic (78) Minority   Repub...

Part of the LGBT rights seriesLegal status ofsame-sex unions Marriage Andorra Argentina Australia Austria Belgium Brazil Canada Chile Colombia Costa Rica Cuba Denmark Ecuador Estonia Finland France Germany Greece Iceland Ireland Liechtenstein* Luxembourg Malta Mexico Nepal Netherlands1 New Zealand2 Norway Portugal Slovenia South Africa Spain Sweden Switzerland Taiwan United Kingdom3 United States4 Uruguay Recognized Israel5 Civil unions andregistered partnerships Bolivia Croatia Cyprus Czech...

 

 

Relationship between two lines that meet at a right angle (90 degrees) For other uses, see Perpendicular (disambiguation). The segment AB is perpendicular to the segment CD because the two angles it creates (indicated in orange and blue) are each 90 degrees. The segment AB can be called the perpendicular from A to the segment CD, using perpendicular as a noun. The point B is called the foot of the perpendicular from A to segment CD, or simply, the foot of A on CD.[1] GeometryProjectin...

 

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (octobre 2021). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? C...

AR-10 AR-10类型自動步槍原产地 美国服役记录服役期间1958-1985年(蘇丹),1960-1976年(葡萄牙)使用方參看使用國参与战争/衝突安哥拉內戰莫桑比克內戰第一次蘇丹內戰莫桑比克獨立戰爭葡屬帝汶衝突墨西哥毒品戰爭生产历史研发者尤金·斯通納研发日期1955-1956年生产商費柴爾德阿瑪萊特(Fairchild Armalite),Artillerie Inrichtingen(AI)生产日期1956-1960年制造数量約10,000...

 

 

American politician Russell B. LongUnited States Senatorfrom LouisianaIn officeDecember 31, 1948 – January 3, 1987Preceded byWilliam C. FeazelSucceeded byJohn BreauxChair of the Senate Finance CommitteeIn officeJanuary 10, 1966 – January 3, 1981Preceded byHarry F. ByrdSucceeded byBob DoleSenate Majority WhipIn officeJanuary 3, 1965 – January 3, 1969LeaderMike MansfieldPreceded byHubert HumphreySucceeded byTed Kennedy Personal detailsBornRussell Billiu Long(191...

 

 

Group of American pilots who flew for the Republic of China Air Force in 1941–42 This article is about the World War II aviation unit. For other uses, see Flying Tigers (disambiguation). 1st American Volunteer GroupFlying Tigers personnelActiveApril 1941 – 4 July 1942Became China Air Task Force in July 1942Country Republic of China United StatesAllegiance Republic of China United StatesTypeFighter pilot groupSize3 squadrons;60 aircraft averageNickname(s)The Flying TigersCommande...

France international rugby league footballer Julian BousquetPersonal informationBorn (1991-07-08) 8 July 1991 (age 33)Fabrezan, Aude,Occitania, FranceHeight6 ft 4 in (1.93 m)Weight18 st 6 lb (117 kg)[1]Playing informationPositionProp Club Years Team Pld T G FG P 2009–11 Lézignan Sangliers 33 4 0 0 16 2012– Catalans Dragons 246 27 0 0 108 Total 279 31 0 0 124 Representative Years Team Pld T G FG P 2011– France 14 0 0 0 0 Source: [2][...

 

 

La Chambre des comptes de Savoie était, au cours de la période médiévale, une cour princière spécialisée dans les affaires de finance du comté, puis du duché de Savoie. Le comté de Savoie a été élevé en duché par l'empereur l'empereur Sigismond Ier, le 19 février 1416. Historique Les possessions de la Maison de Savoie vers 1200 Entre le XIIe et le XVe siècle, la Maison de Savoie va agrandir ses possessions qui vont s'étendre du Viennois et du Bugey à l'ouest, au Valais...