McKelvey–Schofield chaos theorem

The McKelvey–Schofield chaos theorem is a result in social choice theory. It states that if preferences are defined over a multidimensional policy space, then choosing policies using majority rule is unstable. There will in most cases be no Condorcet winner and any policy can be enacted through a sequence of votes, regardless of the original policy. This means that adding more policies and changing the order of votes ("agenda manipulation") can be used to arbitrarily pick the winner.[1]

Versions of the theorem have been proved for different types of preferences, with different classes of exceptions. A version of the theorem was first proved by Richard McKelvey in 1976, for preferences based on Euclidean distances in . Another version of the theorem was proved by Norman Schofield in 1978, for differentiable preferences.

The theorem can be thought of as showing that Arrow's impossibility theorem holds when preferences are restricted to be concave in . The median voter theorem shows that when preferences are restricted to be single-peaked on the real line, Arrow's theorem does not hold, and the median voter's ideal point is a Condorcet winner. The chaos theorem shows that this good news does not continue in multiple dimensions.

Definitions

The theorem considers a finite number of voters, n, who vote for policies which are represented as points in Euclidean space of dimension m. Each vote is between two policies using majority rule. Each voter, i, has a utility function, Ui, which measures how much they value different policies.[clarification needed]

Euclidean preferences

Richard McKelvey considered the case when preferences are "Euclidean metrics".[2] That means every voter's utility function has the form for all policies x and some xi, where d is the Euclidean distance and is a monotone decreasing function.

Under these conditions, there could be a collection of policies which don't have a Condorcet winner using majority rule. This means that, given a number of policies Xa, Xb, Xc, there could be a series of pairwise elections where:

  1. Xa wins over Xb
  2. Xb wins over Xc
  3. Xc wins over Xa

McKelvey proved that elections can be even more "chaotic" than that: If there is no equilibrium outcome[clarification needed] then any two policies, e.g. A and B, have a sequence of policies, , where each one pairwise wins over the other in a series of elections, meaning:

  1. A wins over X1
  2. X1 wins over X2
  3. ...
  4. Xs wins over B

This is true regardless of whether A would beat B or vice versa.

Example

An example of McKelvey's theorem

The simplest illustrating example is in two dimensions, with three voters. Each voter will then have a maximum preferred policy, and any other policy will have a corresponding circular indifference curve centered at the preferred policy. If a policy was proposed, then any policy in the intersection of two voters indifference curves would beat it. Any point in the plane will almost always have a set of points that are preferred by 2 out of 3 voters.


Generalisations

Norman Schofield extended the theorem to more general classes of utility functions, requiring only that they are differentiable. He also established conditions for the existence of a directed continuous path of policies, where each policy further along the path would win against one earlier.[3][1] Some of Schofield's proofs were later found to be incorrect by Jeffrey S. Banks, who corrected his proofs.[4][5]



References

  1. ^ a b Cox, Gary W.; Shepsle, Kenneth A. (2007). "Majority Cycling and Agenda Manipulation: Richard McKelvey's Contributions and Legacy". In Aldrich, John Herbert; Alt, James E.; Lupia, Arthur (eds.). Positive Changes in Political Science. Analytical perspectives on politics. Ann Arbor, Michigan: University of Michigan Press. pp. 20–23. ISBN 978-0-472-06986-6.
  2. ^ McKelvey, Richard D. (June 1976). "Intransitivities in Multidimensional Voting Models and Some Implications for Agenda Control". Journal of Economic Theory. 12 (3): 472–482. doi:10.1016/0022-0531(76)90040-5.
  3. ^ Schofield, N. (1 October 1978). "Instability of Simple Dynamic Games". The Review of Economic Studies. 45 (3): 575–594. doi:10.2307/2297259. JSTOR 2297259.
  4. ^ Banks, Jeffrey S. (1995-01-01). "Singularity theory and core existence in the spatial model". Journal of Mathematical Economics. 24 (6): 523–536. doi:10.1016/0304-4068(94)00704-E. ISSN 0304-4068.
  5. ^ Saari, Donald G. (2008). "Deliver Us from the Plurality Vote". Disposing dictators, demystifying voting paradoxes: social choice analysis. Cambridge, New York: Cambridge University Press. ISBN 978-0-521-51605-1. OCLC 227031682.



Read other articles:

La Bakry La Bakry (lahir 7 Mei 1966) adalah seorang politisi Indonesia kelahiran Buton yang menjabat sebagai Bupati Buton. Ia lahir dari pasangan La Roni dan Naiwui. Ia menikahi Delya Montolalu dan dikaruniai 3 anak. ia menempuh pendidikan di Ambon (Kelas 1 dan 2 SD) kemudian di SDN 2 Pasarwajo (mulai Kelas 3 dan lulus tahun 1977). Ia meneruskan pendidikan di SMAN 3 Ambon dan kemudian di Akademi Pemerintah Dalam Negeri (APDN) di Ambon. Ia mula-mula bekerja sebagai Pelaksana Harian Mantri Poli...

 

National Olympic Committee Bulgarian Olympic CommitteeCountry/Region BulgariaCodeBULCreated1923Recognized1924ContinentalAssociationEOCHeadquartersSofia, BulgariaPresidentStefka KostadinovaSecretary GeneralBelcho GoranovWebsitewww.bgolympic.org The Bulgarian Olympic Committee (Bulgarian: Български олимпийски комитет, Balgarski olimpiyski komitet; abbreviated as БОК, BOC) is a non-profit organization serving as the National Olympic Committee of Bulgaria and a p...

 

Paweł Adamowicz Wali Kota GdańskMasa jabatan26 Oktober 1998 – 14 Januari 2019 PendahuluTomasz PosadzkiPenggantiAleksandra Dulkiewicz (plt.) Informasi pribadiLahirPaweł Bogdan Adamowicz(1965-11-02)2 November 1965Gdańsk, Republik Rakyan PolandiaMeninggal14 Januari 2019(2019-01-14) (umur 53)Gdańsk, PolandiaPartai politikCivic PlatformSuami/istriMagdalena Abramska (m. 1999)Anak2Sunting kotak info • L • B Paweł Bogdan Adamowicz ( [ˈpavɛw ˈBɔɡdan adaˈmɔvit...

GrokTipeKecerdasan buatan generatif, Model bahasa besar dan Chatterbot Versi pertama4 November 2023 GenreChatbotLisensiProprietaryEponimgrok (en) Bagian dariX Premium (en) Karakteristik teknisBahasa pemrogramanPython dan Rust Informasi pengembangPembuatxAI PengembangxAISumber kode Kode sumberPranala Informasi tambahanSitus webgrok.x.ai (Inggris) Sunting di Wikidata  • Sunting kotak info • L • BBantuan penggunaan templat ini Grok adalah bot percakapan kecerdasan buata...

 

Untuk tokoh lain dengan nama serupa, lihat William Murphy. William Parry Murphy (Stoughton, Wisconsin, 6 Februari 1892 – 9 Oktober 1987) adalah seorang dokter Amerika Serikat yang dianugerahi Nobel Fisiologi atau Kedokteran pada tahun 1934 bersama George R. Minot dan George Whipple untuk karya gabungan dalam merancang penanganan untuk anemia makrositik. Murphy lahir pada tanggal 6 Februari 1892 di Stoughton (Wisconsin). Ia menempuh pendidikan di sekolah negeri yang ada di Wisconsin dan Oreg...

 

Russian footballer (born 1986) In this name that follows Eastern Slavic naming customs, the patronymic is Vladimirovich and the family name is Akinfeev. Igor Akinfeev Akinfeev with CSKA Moscow in 2020Personal informationFull name Igor Vladimirovich AkinfeevDate of birth (1986-04-08) 8 April 1986 (age 38)[1]Place of birth Vidnoye, Russian SFSR, Soviet UnionHeight 1.85 m (6 ft 1 in)[2]Position(s) GoalkeeperTeam informationCurrent team CSKA MoscowNumber 35...

For the infantry division, see 24th Infantry Division Pinerolo. For the Italian Army brigade, see Pinerolo Mechanized Brigade. Comune in Piedmont, ItalyPinerolo Pinareul (Piedmontese)ComuneCittà di Pinerolo Coat of armsLocation of Pinerolo PineroloLocation of Pinerolo in ItalyShow map of ItalyPineroloPinerolo (Piedmont)Show map of PiedmontCoordinates: 44°53′N 07°20′E / 44.883°N 7.333°E / 44.883; 7.333CountryItalyRegionPiedmontMetropolitan cityTurin (TO)Fr...

 

NCAA Men's Division I Basketball ChampionshipSport Pallacanestro TipoSquadre di college Paese Stati Uniti OrganizzatoreNational Collegiate Athletic Association TitoloCampione NCAA Division I CadenzaAnnuale Aperturamarzo Chiusuraaprile Partecipanti68 FormulaEliminazione diretta Sito Internetncaa.com StoriaFondazione1939 Detentore UConn Huskies (6) Record vittorie UCLA Bruins (11) Ultima edizioneTorneo di pallacanestro maschile NCAA Division I 2024 Modifica dati su Wikidata ...

 

Эта статья — о нарушениях в области половой функции мужчины. О расстройствах основных проявлений сексуальности см. Сексуальные дисфункции. Запрос «Импотент» перенаправляется сюда; о фильме см. Импотент (фильм). Эта статья или раздел нуждается в переработке....

2015 single by MadonnaHold TightSingle by Madonnafrom the album Rebel Heart ReleasedJuly 24, 2015 (2015-07-24)Recorded2014Studio The Ritz (Moscow, Russia) Grand Marina Hotel (Barcelona, Spain) Patriot (Denver, Colorado and Venice, California) GenrePopelectroLength3:37LabelInterscopeSongwriter(s) Madonna Thomas Wesley Pentz Maureen McDonald Tobias Gad Ariel Rechtshaid Uzoechi Emenike Producer(s)MadonnaMadonna singles chronology Bitch I'm Madonna (2015) Hold Tight (2015) Medell�...

 

Niccolò PaganiniNiccolò Paganini (1819), oleh Jean Auguste Dominique IngresLahir27 Oktober 1782 Genova, Republik GenovaMeninggal27 Mei 1840 Nice, Kerajaan SardiniaPekerjaanKomposer dan violinisTanda tangan Niccolò (atau Nicolò) Paganini, (Italia: [ni(k)koˈlɔ ppaɡaˈniːni] ⓘ; 27 Oktober 1782 – 27 Mei 1840) adalah seorang komponis serta pemain biola, viola, dan gitar asal Italia. Ia adalah salah seorang virtuoso biola paling terkenal, dan disebut-sebut sebagai...

 

Heritage railway in England Gloucestershire Warwickshire RailwayThe Honeybourne LineGWR 2-8-0 28xx Class No. 2807 and its train are seen at ToddingtonLocaleGloucestershire,Worcestershire EnglandTerminusCheltenham Race Course andBroadwayCommercial operationsNameThe Honeybourne LineBuilt byGreat Western RailwayOriginal gauge4 ft 8+1⁄2 in (1,435 mm) standard gaugePreserved operationsOperated byGloucestershire Warwickshire Steam Railway PlcStations6Length14 miles (23...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2023) تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة است...

Moldovan footballer Nicolae Țurcan Personal informationFull name Nicolai ȚurcanDate of birth (1989-12-09) 9 December 1989 (age 34)Place of birth MoldovaHeight 1.87 m (6 ft 2 in)Position(s) GoalkeeperTeam informationCurrent team Codru LozovaNumber 21Senior career*Years Team Apps (Gls)2009–2010 MVD Rossii 11 (0)2011–2012 Astra II Giurgiu 2 (0)2015–2017 Speranța Nisporeni 40 (0)2017 Sfântul Gheorghe 5 (0)2017–2018 Speranța Nisporeni 8 (0)2018–2019 FC UTA Arad 3...

 

Upper house of the Parliament of Cambodia This article needs attention from an expert in Cambodia. The specific problem is: Diagram does not match 2018 election results. WikiProject Cambodia may be able to help recruit an expert. (September 2018) Senate ព្រឹទ្ធសភាPrœ̆tthôsâphéa5th SenateTypeTypeUpper house of the Parliament of Cambodia LeadershipPresidentHun Sen (CPP) since 3 April 2024 First Vice PresidentPrak Sokhonn (CPP) since 3 April 2024 Second Vice Pres...

 

See also: Electricity sector in MexicoLamatalaventosa Wind Farm Mexico total primary energy consumption by fuel in 2015[1]   Coal (7%)  Natural Gas (41%)  Hydro (4%)  Nuclear (1%)  Oil (45%)  Others (Renew.) (2%) This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately su...

Sensor that detects the presence of an intruder This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Perimeter intrusion detection – news · newspapers · books · scholar · JSTOR (January 2020) (Learn how and when to remove this message) A fence-mounted perimeter intrusion detection system installed on a chain link...

 

Irish-American cardinal His EminenceJohn Murphy FarleyCardinal Archbishop of New YorkSeeNew YorkAppointedSeptember 15, 1902Term endedSeptember 17, 1918PredecessorMichael CorriganSuccessorPatrick Joseph HayesOther post(s)Cardinal-Priest of S. Maria sopra MinervaOrdersOrdinationJune 11, 1870by Costantino Patrizi NaroConsecrationDecember 21, 1895by Michael CorriganCreated cardinalNovember 27, 1911by Pius XRankCardinal-PriestPersonal detailsBorn(1842-04-20)April 20, 1842Newtownhamilton,...