Ako je moguće i u upotrebi, koriste se osnovne SI jedinice. Ako nije drugačije označeno, svi podaci dobijeni su mjerenjima u normalnim uvjetima.
Itrij (latinski: ytrium) jeste hemijski element koji ima hemijski simbolY i atomski broj 39. Spada u metale IIIB grupe periodnog sistema. To je srebrenasto svijetli prelazni metal, sličan lantanoidima, a često se ubraja u rijetke zemne elemente.[7] Itrij se gotovo uvijek nalazi zajedno sa lantanoidima u rijetkim zemnim metalima i nikad se u prirodi ne može naći kao samorodni element. Ima samo jedan stabilan izotop89Y, koji se jedini i može naći u prirodi.
Najvažniji vid upotrebe itrija je dobijanje fosforoscentnih boja, kao naprimjer za crvenu boju u starijim televizorskim ekranima na bazi katodnih cijevi (CRT ekrani) ali i za novije LCDekrane.[10] Također se koristi i u proizvodnji elektrodi, elektrolita, elektronskih filtera, lasera i superprovodnika; u razne medicinske svrhe kao i za dodavanje raznim materijalima radi poboljšanja njihovih osobina. Ne postoje dokazi da itrij ima neku biološku ulogu, a izlaganje spojevima itrija može dovesti do plućnih bolesti kod ljudi.[11]
Historija
Godine 1787. vojni poručnik i povremeni hemičarCarl Axel Arrhenius pronašao je teški crni kamen u starom kamenolomu u blizini švedskog sela Ytterby (danas dio Stockholmskog arhipelaga).[12] Vjerujući da je pronašao novi nepoznati mineral koji sadrži, tada novootkriveni, element volfram,[13] dao mu je ime ytterbit.[14] Arrhenius je taj primjerak poslao brojnim hemičarima radi daljnje analize.[12]
Johan Gadolin sa Univerziteta Åbo otkrio je 1789. novi oksid odnosno zemlju u Arrheniusovom uzorku a svoju potpunu analizu objavio je 1794. godine.[15][a]Anders Gustaf Ekeberg je 1797. godine potvrdio ovo otkriće i novom oksidu dao naziv yttria.[16]
U narednim desetljećima nakon što je Antoine Lavoisier razvio prvu modernu definiciju hemijskih elemenata, postojalo je vjerovanje da se zemlje mogu reducirati do svog osnovnog elementa, što bi značilo da je otkriće svake nove zemlje (oksida) jednako otkriću elementa od kojeg je ona potekla, što bi u ovom slučaju značilo yttrium.[b]
Carl Gustaf Mosander je 1843. godine otkrio da uzorci itrije sadrže tri oksida: bijeli itrij oksid (itriju), žuti terbij oksid (u to vrijeme se zvala erbija što je kasnije promijenjeno) i ružičasto obojeni erbij oksid (koji se u to vrijeme zvao terbija.[17] Četvrti oksid, iterbij oksid, je izolirao Jean Charles Galissard de Marignac tek 1878. godine.[18] Iz svakog ovog oksida kasnije su izolirani novi čisti elementi, a svaki od njih je, na neki način, dobio ime po selu Ytterbyu, u čijoj je blizini kamenolom gdje su pronađeni (pogledati sekcije historije kod iterbija, terbija i erbija).[19] U sljedećim desetljećima iz Gadolinove itrije otkriveno je sedam novih metala.[12] Međutim, pošto je itrija bio mineral a ne oksid, Martin Heinrich Klaproth mu je dao ime gadolinit u čast njegovog pronalazača Gadolina.[12]
Sve do početka 1920tih, za ovaj hemijski element korišten je simbol Yt, nakon čega je promijenjen u sadašnji simbol Y.[22] Godine 1987. otkriveno je da spoj itrija itrij-barij-bakar oksid pokazuje osobine superprovodljivosti na visokim temperaturama.[23] To je bio tek drugi otkriveni materijal koji je imao ovu osobinu i prvi koji ima osobinu superprovodljivosti iznad (ekonomski važne) tačke ključanja dušika.[c] Osim ovog spoja, otkriven je i spoj itrij paladij borid-karbida koji je također pokazao slične osobine superprovodljivosti na relativno visokoj temperaturi od 23 K.[24]
Osobine
Itrij je mehak, srebreno sjajni metal, visoko kristalizirani prelazni metal 3. grupe periodnog sistema. Kao što se i očekuje po periodičnom trendu, on je manje elektronegativan od svog prethodnika u grupi skandija i manje elektronegativan od sljedećeg člana u 5. periodi cirkonija. Osim toga, njegova elektronegativnost se može porediti sa sljedećim elementom u 3. grupi, lutecijem, zbog kontrakcije lantanoida.[25][26] Itrij je prvo element d-bloka u 5. periodi.
Čisti element je relativno stabilan na zraku u većim komadima zbog pasiviziranja tokom kojeg se na njegovoj površini formira zaštitni sloj oksida Y2O3, slično kao kod aluminija. Ovaj zaštitni sloj može doseći debiljinu i do 10 µm kada se itrij zagrijava na 750 °C u okruženju vodene pare.[27] Međutim, fino istinjeni prah itrija je vrlo nestabilan na zraku. Opiljci ili strugotine metala se mogu vrlo lahko zapaliti u zraku već na temperaturi od 400 °C.[9]Itrij-nitrid (YN) se formira kada se metal zagrije na 1000 °C u okruženju dušika.[27]
Njegove hemijske osobine podsjećaju na magnezij. Sa vodom reaguje veoma sporo gradeći hidroksid.
Sličnost sa lantanoidima
Sličnosti itrija sa lantanoidima su tako velike da se on u prošlosti dugo vremena svrstavao s njima u rijetke zemne elemente,[7] uvijek nalazio povezan s njima u rijetkim zemnim mineralima.[28] U hemijskom smislu, itrij je više sličan ovim elementima od svog komšije u periodnom sistemu, skandija,[29] a ako bi se fizičke osobine naznačile u odnosu na atomski broj tada bi on imao prividne brojeve između 64,5 i 67,5, što bi ga svrstalo između lantanoida gadolinija i erbija.[30]
On često spada u isti raspon reda reakcija,[27] sličan je kao terbij i disprozij po svojoj hemijskoj reaktivnosti.[10] Itrij je vrlo blizak po veličini teškim lantanoidnim ionima u rastvorima takozvane itrijske grupe, a hemijski se ponaša kao da je jedan od njih.[27][31] Iako su lantanoidi cijeli jedan red ispod itrija u periodnom sistemu, sličnosti atomskog radijusa s njima se može objasniti takozvanom kontrakcijom lantanoida.[32]
Jedna od malobrojnih nešto značajnijih razlika između hemije itrija i lantanoida je to što je itrij gotovo isključivo trovalentan, dok gotovo pola lantanoida ima valenciju različitu od tri.[27]
Izotopi itrija su jedni od najčešćih proizvoda nuklearne fisijeuranija koja se dešava pri nuklearnoj eksploziji ili u nuklearnim reaktorima. Po procedurama upravljanja nuklearnim otpadom, najvažniji izotopi itrija su 91Y i 90Y, koji imaju vrijeme poluraspada od 58,1 dan i 64 sata, respektivno.[35] Iako 90Y ima kratko vrijeme poluraspada, on postoji u sekularnoj ravnoteži sa svojim roditeljskim izotopom stroncijem90Sr koji ima znatno duže vrijeme poluraspada od 29 godina.[9]
Svi elementi 3. grupe periodnog sistema imaju neparan atomski broj te stoga imaju vrlo mali broj stabilnih izotopa.[36]Skandij ima jedan stabilan izotop, a itrij također ima samo jedan stabilni izotop 89Y, koji se jedini i može naći u prirodi. Međutim, lantanoidi rijetkih zemalja sadrže i elemente sa parnim atomskim brojem i brojnim stabilnim izotopima. 89Itrij je nešto više zastupljen u Zemljnoj kori nego što bi po pravilu trebao biti, a razlog jednim dijelom leži u s-procesu koji daje dovoljno vremena da izotopima stvorenim drugim procesima da se raspadnu emisijom elektrona (neutron → proton).[34][d] Takav spori proces ide u korist izotopima sa atomskim masenim brojevima (A je zbir protona i neutrona) oko 90, 138 i 208, koji imaju neobično stabilne atomske jezgre sa 50,82 i 126 neutrona, respektivno.[34][e][9] Izotop 89Y ima maseni broj vrlo blizu 90 i ima tačno 50 neutrona u jezgru.
Do danas je otkriveno 32 sintetička izotopa itrija, čije se atomski maseni brojevi kreću od 76 do 108.[35] Najmanje stabilni izotop među njima je 106Y sa poluvremenom raspada od >150 ns (dok 76Y ima poluvrijeme raspada od >200 ns), dok je najstabilniji izotop 88Y sa vremenom poluraspada od 106,626 dana.[35] Osim izotopa 91Y, 87Y i 90Y sa vremenima poluraspada od 58,51 dana, 79,8 sati i 64 sata, respektivno, svi drugi izotopi imaju vremena poluraspada kraća od jednog dana, a većina tih izotopa ima vremena poluraspada kraća od jednog sata.[35]
Izotopi itrija sa masenim brojevima od 88 i nižim uglavnom se raspadaju putem emisije pozitrona (proton → neutron) dajući kao rezultat izotope stroncija (atomski broj 38).[35] Izotopi itrija sa masenim brojevima od 90 i višim uglavnom se raspadaju emisijom elektrona (neutron → proton) dajući izotope cirkonija (Z = 40).[35] Za izotope sa masenim brojevima 97 ili višim poznato je da imaju i manje izražen nuklearni lanac raspadanja β− sa naknadnom emisijom neutrona.[37]
Poznato je najmanje 20 nuklearnih izomera čiji maseni brojevi se kreću u rasponu od 78 do 102.[35][f] Dokazana su brojna pobuđena stanja za izotope 80Y i 97Y.[35] Iako se za većinu nuklearnih izomera itrija očekuje da budu manje stabilni od svojih osnovnih stanja, nuklearni izomeri 78mY, 84mY, 85mY, 96mY, 98m1Y, 100mY i 102mY imaju duža vremena poluraspada nego u svojim osnovnim stanjima, a ti izomeri se ne raspadaju izomerijskom tranzicijom već putem beta raspada.[37]
Rasprostranjenost
Itrij je pronađen u većini rijetkih zemnih minerala[26] kao i u nekim rudama uranija, međutim u prirodi nikad nije nađen kao samorodan.[38] Sa udjelom od oko 31 ppm (0,0031%) u Zemljinoj kori,[10] itrij je 28. element po rasprostranjenosti, odnosno oko 400 puta više zastupljen od srebra.[39] Itrij je pronađen u tlu u koncentracijama između 10 i 150 ppm (0,001% - 0,015%, prosjek oko 23 ppm (0,0023%)). Njegov udio u morskoj vodi iznosi oko 9 ppt (9×10−10%).[39] Uzorci koje su prikupile američke svemirske misije na Mjesec u sklopu Apolo projekta pokazali su relativno veliki udio itrija u njima.[19]
Velika geohemijska podjela rijetkih zemalja u grupu cerija i grupu itrija je imala za primjer prvobitna otkrića oksida cerije 1803. i itrije 1794. godine. Ono što se 1794. godine zvalo yttria je identično mineralu ksenotimu i sastavu ionske gline iz Lognana, čineći oko dvije trećine itrij oksid po težine i otprilike 4 do 7% od svakog teškog lantanoida sa parnim atomskim brojem te 0,5 do 1,5% lantanoida sa neparnim atomskim brojem, što je u skladu sa Oddo-Harkinsovim pravilom. Tijelo ruda rijetkih zemlji se danas posmatra kao pravolinijska kombinacija itrije iz 1794. i cerije iz 1803. godine kao prvim aproksimacijama. Ovo je, međutim, tačno za okruženja kiselih stijena. Bazične stijene imaju mali sadržaj itrije i poremećen sastav cerije, bogate lantanom zajedno sa nižim relativnim udjelom neodija.
Nije poznata nijedna biolološka uloga itrija, mada je njegovo prisustvo dokazano u većini, ako ne i u svim, poznatim živim organizmima. Itrij ima tendenciju da se taloži u jetri, bubrezima, slezeni, plućima i kostima kod čovjeka.[40] Njegova uobičajena količina u prosječnom čovjekovom organizmu iznosi oko 0,5 miligrama. Studije su pokazale da majčino mlijeko može sadržavati oko 4 ppm itrija (0,0004%).[41] Itrij se može naći u mnogim jestivim biljkama u koncentracijama između 0,002% i 0,01% (u svježim biljkama), a među njima kupus ima najveći udio itrija.[41] Gotovo 0,07% itrija je pronađeno u sjemenu nekih vrsta drvenastih biljaka, što je najveća poznata izmjerena koncentracija.[41]
Dobijanje
Hemijska sličnost itrija sa lantanoidima je uzrok da se on obrađuje i obogaćuje istim procesima i tehnologijom kao i rude koje sadrže lantanoide, zajedno sačinjavajući rijetke zemne minerale. Postoji određena manja razlika između lahkih (LRZE) i teških rijekih zemnih elemenata (TRZE), ali tačna razlika nije striktno određena. Itrij je svrstan u grupu TRZE zbog veličine svog iona iako ima nižu atomsku masu od drugih.[42][43]
Postoje četiri osnovna izvora rijetkih zemnih elemenata:[44]
Karbonati i fluoridi koji sadrže rude kao što je LRZE bastnesit ([(Ce, La, etc.)(CO3)F]) koji sadrži u prosjeku 0,1%[9][42] itrija za razliku od 99,9% kod drugih 16 rijetkih zemnih elemenata.[42] Osnovni izvor za bastnesit u periodu od 1960tih do 1990tih bio je rudnik rijetkih minerala Mountain Pass u američkoj saveznoj državi Kalifornija, što je u to vrijeme dovelo SAD na prvo mjesto najvećih proizvođača rijetkih zemnih elemenata.[42][44]
Monazit ([(Ce, La, i dr.)PO4]), od kojih su većina fosfati, je depozitni aluvijalni pijesak koji nastaje prijenosom i gravitacijskim odvajanjem erodiranog granita. Monazir, kao ruda LRZE, sadrži 2%[42] (po nekim izvorima 3%[45]) itrija. Najveći takvi depoziti pronađeni su u Indiji i Brazilu početkom 20. vijeka, što je dovelo ove dvije zemlje u vrh svjetskih proizvođača itrija u prvoj polovini 20. vijeka.[42][44]
Ksenotim, fosfat rijetkih zemnih elemenata, je osnovna ruda TRZE a sadrži do 60% itrija u vidu itrij fosfata (YPO4).[42] Najveći rudnik ovog minerala je depozit Bayan Obo u Kini, što čini Kinu najvećim izvoznikom TRZE od zatvaranja rudnika Mountain Pass 1990tih.[42][44]
Gline ionske apsorpcije ili gline iz Lognana su proizvod granita uzrokovan erozijom a sadrži samo 1% rijetkih zemnih elemenata.[42] Međutim, konačni proizvodni koncentrat rude može sadržavati do 8% itrija. Gline ionske apsorpcije se najviše iskopavaju u rudnicima južne Kine.[42][44][46] Itrij se također može naći i u mineralima samarskitu i fergusonitu.[39]
Jedna od metoda dobijanja čistog itrija iz miješanih oksidnih ruda je rastvaranje oksida u sumpornoj kiselini te njihovo razdvajanje putem ionoizmjenjivačkehromatografije. Dodavanjem oksalne kiseline taloži se itrij oksalat. Zatim se oksalat prevodi u oksid njegovim zagrijavanjem u prisustvu kisika. Reakcijom nastalog itrij-oksida sa fluorovodikom, nastaje itrij-fluorid.[47] Koristeći kvatarne amonijeve soli kao ekstrakante, itrij uglavnom ostaje u vodenoj fazi: ako je suprotni ion nitrat, uklanjaju se lahki lantanoidi, a ako je suprotni ion tiocijanat, uklanjaju se teški. Tim postupkom dobijaju se itrijeve soli čistoće 99,999%. U većini situacija, kada itrij sačinjava dvije trećine mješavine teških lantanoida, postoji velika prednost njegovog izdvajanja iz sistema što je prije moguće, kako bi se olakšalo odvajanje preostalih elemenata.
Svjetska godišnja proizvodnja itrij oksida dostigla je 2001. godine 600 tona, a njegove rezerve se procjenjuju na oko 9 miliona tona.[39] Samo nekoliko tona metala itrija se proizvede svake godine redukcijom itrij-fluorida u metalnu spužvu sa legurama kalcija i magnezija. Temperatura lučne peći iznad 1600 °C je dovoljna da se itrij istopi.[39][47]
Upotreba
Proizvodi široke potrošnje
Itrija (itrij(III) oksid, Y2O3)) može služiti kao osnovna rešetka za dopiranje sa kationima Eu3+ kao i reaktant za dobijanje dopiranog itrij ortovanadata YVO4:Eu3+ ili itrij-oksidsulfida Y2O2S:Eu3+, fosforescentna boja koja daje crveni sjaj u katodnim cijevima za sliku kod televizora u boji,[9][10][g] mada se crvena boja zapravo emitira iz europija dok itrij služi za sakupljanje energije iz elektronskih pištolja i predaje je fosforescentim bojama.[48] Spojevi itija mogu također služiti kao osnovna rešetka za dopiranje sa različitim kationima lantanoida. Osim Eu3+, kao dopirajuće sredstvo također se koristi i Tb3+ koji daje zelenu luminiscenciju. Itrija se također koristi i kao dodatak u procesu sinterovanja kod proizvodnje poroznog silicij-nitrida[49] i kao uobičajena polazna sirovina proizvodnju drugih spojeva itrija ali i važan materijal u nauci o materijalima.
Spojevi itrija se koriste kao katalizatori za polimerizacijuetena.[9] Kao metal, koristi se za elektrode kod nekih automobilskih svjećica gdje su potrebne visoke performanse.[50] Itrij se također upotrebljava u proizvodnji Colemanovih mrežica za propanske lampe kao zamjena za torij koji je radioaktivan.[51] Istraživanje budućih načina upotrebe itrija uključuje djelimično stabiliziranje cirkonije itrijem kao čvrsti elektrolit i kao senzor za kisik u automobilskim ispušnim sistemima.[10]
Malehne količine itrija (0,1 do 0,2%) se koriste za smanjivanje veličine zrna hroma, molibdena, titanija i cirkonija.[60] Također se koristi za povećanje jačine leguraaluminija i magnezija.[9] Dodavanje itrija legurama općenito poboljšava njihovu obradu, povećava im otpornost na rekristalizaciju pri visokim temperaturama i značajno poboljšava njihovu otpornost na oksidaciju pri visokim temperaturama.[48]
Itrij se može koristiti za deoksidiranje vanadija i drugih obojenih metala.[9] Njegov oksid zvani itrija se koristi za stabiliziranje kockaste forme cirkonije koja se upotrebljava kao nakit.[61] Itrij se proučava u mogućim aplikacijama kao nodulator za izradu nodularnog lijevanog čelika, koji ima povećanu duktilnost (grafit u njemu formira kompaktne nodule umjesto stvaranja ljuskica).[9] Itrij-oksid se također koristi u izradi keramike i stakla, zbog svoje visoke tačke topljenja i odgovarajućih osobina otpornosti na stres te niske stope toplotnog širenja.[9] Zbog toga se koristi i za izradu objektiva za kamere.[39]
Igle načinjene od itrija-90, a koje mogu rezati preciznije od običnog skalpela, koriste se za presjecanje živaca koji provode bol u kičmenoj moždini,[13] a itrij-90 se također koristi za vršenje radionuklidne sinovektomije (hirurško uklanjanje dijela sinovijalne membrane zgloba) pri tretmanima upale zglobova, naročito koljena kod pacijenata sa stanjima poput reumatoidnog artritisa.[63]
Laser od itrij-aluminij-granata dopiran neodijem se koristi u eksperimentalnoj, radikalnoj prostatektomiji potpomognutu robotima kod pasa u pokušaju da se smanji kolateralna šteta živaca i tkiva,[64] dok takvi laseri dopirani erbijem počeli su se koristiti u kozmetičkom oblikovanju kože.[10]
Superprovodnici
Itrij se koristi u itrij-barij-bakar oksidu (YBa2Cu3O7, poznat i kao 'YBCO' ili '1-2-3'), superprovodnika razvijenog na Univerzitetu u Alabami i Houstonu 1987. godine.[23] Ovaj superprovodnik radi na temperaturi od 93 K, što je značajno jer je iznad tačke ključanja tečnog dušika (77,1 K).[23] Pošto je cijena tečnog dušika mnogo niža od cijene tečnog helija, koji se obično mora koristiti za metalne superprovodnika, upotrebom ovog superprovodnika značajno se snižavaju troškovi.
Stvarni superprovodnički materijal se često označava kao YBa2Cu3O7–d, gdje d mora biti manje od 0,7 za materijal da bi bio superprovodnik. Razlozi za to još nisu potpuno poznati, ali se zna da se praznine pojavljuju samo na određenim mjestima u kristalu, planarni oksidi bakra prelaze u lančane,[65] što dovodi do neuobičajenih oksidacijskih stanja atoma bakra, što nekako dovodi do superprovodničkih osobina.
Teorija niskih temperatura superprovodljivosti je bila dobro razvijena sve dok se 1957. godine nije pojavila BCS teorija. Ona je zasnovana na neuobičajenim međusobnim reakcijama između dva elektrona u kristalnoj rešetki. Međutim BCS teorija nije mogla objasniti superprovodljivost koja se javlja na visokim temperaturama, a njen tačan mehanizam djelovanja ni do danas nije potpuno jasan. Ono što je poznato, je da se sastav materijala od bakar oksida mora precizno kontrolirati da bi se javila superprovodljivost.[66]
Dobijeni materijal je bio crne i zelene boje, multikristalni i multifazni mineral. Istraživači proučavaju klasu materijala poznatih kao perovskiti koji su alternativna mješavina ovih elemenata, nadajući se da će razviti praktičan superprovodnik pogodan za visoke temperature.[45]
Spojevi
Kao trovalentni prelazni metal, itrij gradi razne neorganske spojeve, uglavnom u oksidacijskom stanju +3, tako što otpušta sva tri svoja valentna elektrona.[67] Dobar primjer spoja itrija je itrij(III) oksid (Y2O3), također poznat i kao itrija, bijela čvrsta supstanca sa šest koordiniranih kovalentnih veza.[68]
Itrij gradi, u vodi nerastvorljive, fluoride, hidrokside i oksalate, međutim bromidi, hloridi, jodidi, nitrati i sulfati itrija su gotovo svi rastvorljivi u vodi.[27] Ion itrij Y3+ je bezbojan u rastvorima zbog odsustva elektrona u d i f elektronskim ljuskama.[27]Voda vrlo lahko reagira sa metalnim itrijem i njegovim spojevima dajući Y2O3.[28] Koncentrirana nitratna i fluorovodična kiselina ne napadaju burno itrij, ali ostale jake kiseline ga vrlo snažno napadaju.[27] Sa halogenim elementimam itrij gradi trihalide poput itrij(III) fluorida (YF3), itrij(III) hlorida (YCl3) i itrij(III) bromida (YBr3) pri temperaturama iznad približno 200 °C.[11] Slično tome, pri povišenim temperaturama ugljik, fosfor, selen i sumpor također grade binarne spojeve sa itrijem.[27]
Organoitrijska hemija proučava spojeve koji sadrže ugljik-itrij veze. Za neke od njih je dokazano da u njima itrij ima oksidacijsko stanje 0.[69][70] U nekim istopljenim hloridima je dokazano i stanje +2,[71] dok je stanje +1 dokazano u oksidnim klasterima u gasovitom stanju.[72] Posmatrane su i neke reakcije trimerizacije koristeći organoitrijske spojeve kao katalizatore.[70] Ovi spojevi koriste YCl3 kao polazni materijal koji se dalje dobija iz Y2O3, koncentrirane hlorovodične kiseline i amonij-hlorida.[73][74]
Haptičnost je pojam koji označava kako se susjedni atomi liganda koordiniraju na centralni atom; označava se grčkim slovom eta, η. Kompleksi itrija su prvi primjeri među kompleksima gdje su karboranilni ligandi veza na 0-metalni centar pomoću η7-haptičnosti.[70] Vaporizacija grafitnih interkaliranih spojeva grafit-Y ili grafit-Y2O3 dovodi do formiranja endohedralnih fulerena kao što je Y@C82.[10] Proučavanje pomoću elektronske spin rezonance dokazuju formiranje ionskih parova Y3+ i (C82)3−.[10] Svaki od karbida itrija Y3C, Y2C i YC2 se može hidrolizirati dajući ugljikovodike.[27]
Mjere bezbjednosti
U vodi rastvorljivi spojevi itrija se smatraju slabo otrovnim, dok nerastvorljivi spojevi nisu otrovni.[41] U eksperimentima na životinjama, itrij i njegovi spojevi uzrokovali su oštećenja pluća i jetre, mada otrovnost nije ista za sve spojeve itrija. Kod pacova, udisanje itrij citrata dovelo je do pojave plućnih edema i dispneje, dok je udisanje itrij hlorida uzrokovalo edem jetre, pleuralni izljev i plućnu hiperemiju.[11]
Kod čovjeka, izlaganje spojevima itrija može prouzrokovati plućna oboljenja.[11] Radnici koji su bili izloženi prašini itrij europij vanadata u zraku imali su blage iritacije očiju, kože i gornjih disajnih puteva, mada se takvi efekti mogu javiti zbog sadržaja vanadija, prije nego zbog itrija.[11] Akutno izlaganje spojevima itrija može izazvati kratkoću daha, kašljanje, bolove u grudima i cijanozu.[11] Američki Nacionalni institut za sigurnost i zdravlje radnika (NIOSH) preporučuje najveće dozvoljeno izlaganje itriju od prosječno 1 mg/m3 zraka a najveća 30-minutna izloženost (IDLH) ne smije biti viša od 500 mg/m3.[75] Prah itrija je zapaljiv.[11]
^Pogledate i magični broj. Međutim, ova stabilnost je rezultat njegove vrlo malehne poprečne površine hvatanja neutrona.(Greenwood 1997, str. 12–13). Emisija elektrona izotopa sa tim masenim brojem je jednostavno manje zastupljena zbog ove stabilnosti, što ima za rezultat da imaju veću zastupljenost.
^Nuklearni izomeri imaju energetska stanja viša od normalnih koja odgovaraju nepobuđenim jezgrama a ova stanja traju do emitiranja gama zraka ili konverzije elektrona od strane izomera. Oni se označavaju sa m pored masenog broja izotopa.
^Emsley 2001, str. 497 navodi da "Itrij oksisulfid, dopiran europijem (III), se koristi kao standardna crvena komponenta u televizorima u boji".
Reference
^Harry H. Binder (1999). Lexikon der chemischen Elemente. Stuttgart: S. Hirzel Verlag. ISBN3-7776-0736-3.
^ abYiming Zhang, Julian R. G. Evans, Shoufeng Yang (2011). "Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks". Journal of Chemical & Engineering Data. 56: 328–337. doi:10.1021/je1011086.CS1 održavanje: više imena: authors list (link)
^ abcdefghijklmnurednici CRC (2007). "Yttrium". u Lide, David R. (ured.). CRC Handbook of Chemistry and Physics. 4. New York City: CRC Press. str. 41. ISBN978-0-8493-0488-0.
^Mosander, Carl Gustaf (1843). "Ueber die das Cerium begleitenden neuen Metalle Lathanium und Didymium, so wie über die mit der Yttererde vorkommen-den neuen Metalle Erbium und Terbium". Annalen der Physik und Chemie. 60 (2): 297–315. doi:10.1002/andp.18431361008
^urednici Britannica (2005). "ytterbium". Encyclopædia Britannica, Inc. Nepoznati parametar |encyclopedia= zanemaren (pomoć)
^Heiserman David L. (1992). "Element 39: Yttrium". Exploring Chemical Elements and their Compounds. New York: TAB Books. str. 150–152. ISBN0-8306-3018-X.
^Friedrich Wöhler (1828). "Ueber das Beryllium und Yttrium". Annalen der Physik. 89 (8): 577–582. doi:10.1002/andp.18280890805.
^Coplen; Peiser, H. S., Tyler B. (1998). "History of the Recommended Atomic-Weight Values from 1882 to 1997: A Comparison of Differences from Current Values to the Estimated Uncertainties of Earlier Values (Technical Report)". Pure Appl. Chem. IUPAC Inorganic Chemistry Division Commission on Atomic Weights and Isotopic Abundances. 70 (1): 237–257.CS1 održavanje: više imena: authors list (link)doi:10.1351/pac199870010237
^ abcWu, M. K.; et al. (1987). "Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure". Physical Review Letters. 58 (9): 908–910. doi:10.1103/PhysRevLett.58.908. Eksplicitna upotreba et al. u: |author= (pomoć)
^R. J. Cava, H. Takagi, B. Batlogg, H. W. Zandbergen et al. (1991): Superconductivity at 23 K in yttrium palladium boride carbide, Nature367, 146 - 148 (13. januar 1994.); doi:10.1038/367146a0
^ abHammond, C. R. "Yttrium". The Elements(pdf). Fermi National Accelerator Laboratory. str. 4–33. ISBN0-04-910081-5. Arhivirano(PDF) s originala, 26. 6. 2008. Pristupljeno 28. 6. 2008.
^ abcdefghurednici NND; Alejandro A. Sonzogni (ur.) (2008). "Chart of Nuclides". National Nuclear Data Center, Brookhaven National Laboratory. Arhivirano s originala, 10. 10. 2018. Pristupljeno 13. 9. 2008.CS1 održavanje: više imena: authors list (link)
^ abAudi Georges; Bersillon O.; Blachot J.; Wapstra A.H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. Atomic Mass Data Center. 729: 3–128. doi:10.1016/j.nuclphysa.2003.11.001.CS1 održavanje: više imena: authors list (link)
^N. S. MacDonald; Nusbaum, R. E.; Alexander, G. V. (1952). "The Skeletal Deposition of Yttrium"(PDF). Journal of Biological Chemistry. 195 (2): 837–841. Arhivirano s originala(PDF), 26. 3. 2009. Pristupljeno 15. 6. 2014.CS1 održavanje: više imena: authors list (link)
^Yasuo Kanazawa; Kamitani, Masaharu (2006). "Rare earth minerals and resources in the world". Journal of Alloys and Compounds. 408–412: 1339–1343.CS1 održavanje: više imena: authors list (link)doi:10.1016/j.jallcom.2005.04.033
^Zuoping Zheng; Lin Chuanxian (1996). "The behaviour of rare-earth elements (REE) during weathering of granites in southern Guangxi, China". Chinese Journal of Geochemistry. 15 (4): 344–352.CS1 održavanje: više imena: authors list (link)doi:10.1007/BF02867008
^ abArnold F. Holleman; Wiberg, Egon i Wiberg, Nils (1985). Lehrbuch der Anorganischen Chemie (91–100 izd.). Walter de Gruyter. str. 1056–1057. ISBN3-11-007511-3.CS1 održavanje: više imena: authors list (link)
^Vajargah, S. Hosseini; Madaahhosseini H.; Nemati Z. (2007). "Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate-citrate gel". Journal of Alloys and Compounds. 430 (1–2): 339–343. doi:10.1016/j.jallcom.2006.05.023
^urednici GIA (1995). GIA Gem Reference Guide. Gemological Institute of America. ISBN0-87311-019-6.
^Kiss Z. J.; Pressley, R. J. (oktobar 1966). "Crystalline solid lasers". Proceedings of the IEEE. 54. IEEE. str. 1236–1248. issn: 0018-9219. Pristupljeno 16. 8. 2008. Upotreblja se zastarjeli parametar |booktitle= (pomoć)CS1 održavanje: više imena: authors list (link)
^J. Kong; Tang, D. Y.; Zhao, B.; Lu, J.; Ueda, K.; Yagi, H.; Yanagitani, T. (2005). "9.2-W diode-pumped Yb:Y2O3 ceramic laser". Applied Physics Letters. 86 (16): 116.CS1 održavanje: više imena: authors list (link)doi:10.1063/1.1914958
^M. Tokurakawa; Takaichi, K.; Shirakawa, A.; Ueda, K.; Yagi, H.; Yanagitani, T.; Kaminskii, A. A. (2007). "Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser". Applied Physics Letters. 90 (7): 071101.CS1 održavanje: više imena: authors list (link)doi:10.1063/1.2476385
^Golubović, Aleksandar V.; Nikolić, Slobodanka N.; Gajić, Radoš; Đurić, Stevan; Valčić, Andreja (2002). "The growth of Nd: YAG single crystals". Journal of the Serbian Chemical Society. 67 (4): 91–300.CS1 održavanje: više imena: authors list (link)doi:10.2298/JSC0204291G
^M. Fischer; Modder, G. (2002). "Radionuclide therapy of inflammatory joint diseases". Nuclear Medicine Communications. 23 (9): 829–831.CS1 održavanje: više imena: authors list (link)doi:10.1097/00006231-200209000-00003
^ abcHerbert Schumann; Fedushkin, Igor L. (2006). "Scandium, Yttrium & The Lanthanides: Organometallic Chemistry". Encyclopedia of Inorganic Chemistry. doi:10.1002/0470862106.ia212. ISBN0-470-86078-2.CS1 održavanje: više imena: authors list (link)
^Mikheev Nikolai B.; et al. (1992). "The anomalous stabilisation of the oxidation state 2+ of lanthanides and actinides". Russian Chemical Reviews. 61 (10): 990–998. doi:10.1070/RC1992v061n10ABEH001011. Eksplicitna upotreba et al. u: |author= (pomoć)
^Spencer James F. (1919). The Metals of the Rare Earths. New York: Longmans, Green, and Co. str. 135. Pristupljeno 12. 8. 2008.
^Turner, Jr. Francis M.; Berolzheimer, Daniel D.; Cutter, William P.; Helfrich, John (1920). The Condensed Chemical Dictionary. New York: Chemical Catalog Company. str. 492. Pristupljeno 12. 8. 2008.CS1 održavanje: više imena: authors list (link)
Johan Gadolin (1794). "Undersökning af en svart tung Stenart ifrån Ytterby Stenbrott i Roslagen". Kongl. Vetenskaps Academiens Nya Handlingar. 15: 137–155.
Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements (2. izd.). Oxford: Butterworth-Heinemann. ISBN0-7506-3365-4.CS1 održavanje: više imena: authors list (link)
Gupta C. K.; Krishnamurthy N. (2005). "Ch. 1.7.10 Phosphors". Extractive metallurgy of rare earths(PDF). CRC Press. ISBN0-415-33340-7. Arhivirano s originala 23. 6. 2012. Pristupljeno 14. 2. 2015.CS1 održavanje: više imena: authors list (link) CS1 održavanje: bot: nepoznat status originalnog URL-a (link)
Dmitry Andreevich ArtyukhovДмитрий Андреевич Артюхов Gubernur Okrug Otonom Yamalo-NenetsPetahanaMulai menjabat 29 Mei 2018PresidenVladimir Putin PendahuluDmitry KobylkinPenggantiPetahana Informasi pribadiLahir07 Februari 1988 (umur 36)Salekhard, RSFSR, Uni SovietKebangsaanRussiaPartai politikRusia BersatuProfesiEkonomSunting kotak info • L • B Dmitry Andreevich Artyukhov (Rusia: Андреевич Артюхов, lahir 7 Februari 1988 di Salehard)...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cork county football team – news · newspapers · books · scholar · JSTOR (May 2020) (Learn how and when to remove this template message) Gaelic football team CorkSport:FootballIrish:Corcaigh Nickname(s):The RebelsThe LeesidersCounty board:Cork GAAManager:John Cl...
Запрос «Сегодня, мама!» перенаправляется сюда; о компьютерной игре см. Сегодня, мама! (игра). Остров Русь Обложка первого издания романа Жанр Фэнтези Автор Сергей ЛукьяненкоЮлий Буркин Язык оригинала русский Дата первой публикации 1997 Следующее Остров Русь 2, или Принцес...
Questa voce sull'argomento pallanuotisti statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Calvert Strong Nazionalità Stati Uniti Pallanuoto Carriera Nazionale Stati Uniti Palmarès Olimpiadi Bronzo Los Angeles 1932 Pallanuoto 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito. Statistiche aggiornate al 13 gennaio 2009 Modifica dati su ...
Caisse nationale d'assurance vieillesse des professions libéralesLogo de la Caisse nationale d'assurance vieillesse des professions libérales.CadrePays FranceCoordonnées 48° 52′ 49″ N, 2° 18′ 56″ EOrganisationSite web www.cnavpl.frmodifier - modifier le code - modifier Wikidata La Caisse nationale d'assurance vieillesse des professions libérales (CNAVPL) est un organisme de sécurité sociale français de droit privé chargé d’une missi...
American politician (1914–1996) Edmund MuskieMuskie in 197158th United States Secretary of StateIn officeMay 8, 1980 – January 18, 1981PresidentJimmy CarterDeputyWarren ChristopherPreceded byCyrus VanceSucceeded byAlexander HaigUnited States Senatorfrom MaineIn officeJanuary 3, 1959 – May 7, 1980Preceded byFrederick PayneSucceeded byGeorge MitchellChair of the Senate Budget CommitteeIn officeJanuary 3, 1975 – May 8, 1980Preceded byPosition establishedSucceed...
Disambiguazione – Se stai cercando il poeta italiano, vedi Guido Gozzano. Gozzanocomune Gozzano – VedutaPanorama LocalizzazioneStato Italia Regione Piemonte Provincia Novara AmministrazioneSindacoGianluca Godio (lista civica di centro-destra Gozzano nel cuore) dal 27-5-2019 TerritorioCoordinate45°45′N 8°26′E / 45.75°N 8.433333°E45.75; 8.433333 (Gozzano)Coordinate: 45°45′N 8°26′E / 45.75°N 8.433333°E45.75; 8.43333...
Pour les articles homonymes, voir Famille de Barral et Barral. Joseph Marie de Barral Fonctions Maire de Grenoble 28 février 1790 – 1er août 1790 (5 mois et 4 jours) décembre 1792 – mai 1794 (1 an et 5 mois) 1800 – 1800 (moins d'un an) Député de l'Isère 27 décembre 1803 – 4 juin 1814 (10 ans, 5 mois et 8 jours) Législature Corps législatif (Consulat et Premier Empire) Biographie Date de naissance 21 mars 1742 Lieu de naissance Grenoble, Dau...
2010 FIFA World Cup opening ceremonyCrowds near Sandton City two days prior to the opening ceremony.Date11 June 2010 (2010-06-11)Time14:00 South African Standard Time (UTC+2)LocationSoccer City, Nasrec, Johannesburg, South Africa FIFA World Cup opening ceremonies 1930 1934 1938 1950 1954 1958 1962 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014 2018 2022 2026 2030 2034 The 2010 FIFA World Cup opening ceremony took place on 11 June at the Soccer City stadium in...
Widespread human mitochondrial DNA grouping indicating common ancestry This article is about the human mtDNA haplogroup. For the human Y-DNA haplogroup, see Haplogroup M-P256. Haplogroup MPossible time of originca. 55,000-65,000 years ago[1] or 50,000-65,000 years ago[2]Possible place of originSouth Asia,[3][4][5][6][7][8] Southwest Asia,[2][1] Southeast Asia,[9][10] or East Africa[11][...
Broadcasting of television using artificial satellites For the television channel Satellite Television launched in 1982, see Sky One § History. A number of satellite dishes Satellite television is a service that delivers television programming to viewers by relaying it from a communications satellite orbiting the Earth directly to the viewer's location.[1] The signals are received via an outdoor parabolic antenna commonly referred to as a satellite dish and a low-noise block dow...
NCAA women's ice hockey postseason tournament Collegiate ice hockey tournament 2014 NCAA National Collegiate women's ice hockey tournament2014 Women's Frozen Four logoTeams8Finals siteTD Bank Sports CenterHamden, ConnecticutChampionsClarkson Golden Knights (1st title)Runner-upMinnesota Golden Gophers (6th title game)SemifinalistsWisconsin Badgers (7th Frozen Four)Mercyhurst Lakers (4th Frozen Four)Winning coachShannon Desrosiers and Matt Desrosiers (1st title)MOPJamie Lee Ratt...
Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Biografi tokoh yang masih hidup ini tidak memiliki referensi atau sumber sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera diha...
Championnat National 2021-2022 Competizione Championnat National Sport Calcio Edizione 23ª Organizzatore FFF Date dal 7 agosto 2021al 23 maggio 2022 Luogo Francia Partecipanti 18 Formula Girone all'italiana A/R + play-off Risultati Vincitore Laval Promozioni Laval Annecy Retrocessioni Sète Chambly Créteil-Lusitanos Boulogne Cronologia della competizione 2020-2021 2022-2023 Manuale Lo Championnat National 2021-2022 è la 29ª stagione dalla fon...
Daniel Caesar Nazionalità Canada GenereContemporary R&B[1][2][3]Soul[3]Gospel[2][3]Alternative R&B[1][2]Pop[1][2] Periodo di attività musicale2014 – in attività Strumentovoce EtichettaGolden Child Recordings Album pubblicati2 Studio2 Sito ufficiale Modifica dati su Wikidata · Manuale Daniel Caesar, pseudonimo di Ashton Dumar Norwill Simmonds (Oshawa, 5 aprile 1995), è un...
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2020-05) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. Zhu Xi (朱熹) Född1130 i Youxi i FujianDöd1200RegionKinesisk filosofiSkolaNeokonfucianism Zhū Xī, kinesiska: 朱熹, Zhu Xi, Chu Hsi (född 1130 i Youxi i Fujian i Kina, död 1200) var Kinas främsta neokonfuciansk...
PhooliSutradaraAvinash DhyaniProduserManish KumarAvinash DhyaniLalit Jindal Rajeev Sharma Capt. Manoj Kumar SinghDitulis olehAvinash DhyaniPemeranRiya BaluniAvinash DhyaniSuruchi SaklaniPrince JuyalPenata musikAvinash DhyaniSinematograferRamesh SamantPenyuntingDhananjay DhyaniPerusahaanproduksiPadma Siddhi FilmsDream Sky CreationsTanggal rilis 07 Juni 2024 (2024-06-07) [1]NegaraIndiaBahasaHindi Phooli adalah film drama India berbahasa Hindi tahun 2024 yang ditulis dan disut...
Sir Robert Hamilton, 6th Baronet Sir Robert North Collie Hamilton, 6th Baronet KCB DL (7 April 1802 – 31 May 1887) was a British politician and East India Company civil servant. Hamilton was the eldest son of Sir Frederic Hamilton, 5th Baronet, and his wife, Eliza Ducarel Collie. He succeeded to the Baronetcy in 1853.[1] Career He entered the East India Company civil service in 1820, and served in Benares until 1830. He was appointed Magistrate and Collector of Meerut in 18...