Ako je moguće i u upotrebi, koriste se osnovne SI jedinice. Ako nije drugačije označeno, svi podaci dobijeni su mjerenjima u normalnim uvjetima.
Volfram [ˈvɔlfram] je hemijski element sa simbolom W i atomskim brojem 74. Spada u prelazne metale. U periodnom sistemu elemenata stoji u VI B grupi odnosno grupi hroma. Volfram je srebreni sjajni metal, u svom čistom stanju je krhak teški metal, velike relativne gustoće. Među svim metalima (u čistom stanju) ima najvišu tačku topljenja i drugu najvišu tačku ključanja. Njegova napoznatija upotreba je kao žareća nit (filament) u sijalicama.
Historija
Već u 16. vijeku frajberški mineralog Georgius Agricola je opisao pronalazak minerala među rudom kalaja iz Saksonije, koji je prilično otežavao dobijanje kalaja jer je povećavao udio šljake u rudi. Upravo dio njegovog imena volf (njem. Wolf - vuk) je izveden iz ove osobine, jer je taj mineral doslovno jeo rudu kalaja poput vuka. Da li se tada radilo o mineralu volframitu čak ni danas nije sa sigurnošću poznato, jer je on opisivao lahkoću tog minerala. Agicola je taj mineral nazvao lupi spuma, što na latinskom znači otprilike vučja pjena. Kasnije je nazvan volfram, iz srednjenjemačkog rām, otpad, čađ, jer se crnosivi metal vrlo lahko mogao samljeti i tada je izgledom podsjećao na čađ.[4] Njegov međunarodni hemijski simbol W je izveden iz njemačkog Wolfram.
U engleskom, italijanskom i francuskom jeziku, ovaj metal se naziva tungsten što je izvedeno iz švedskog Tung Sten, doslovnog značenja teški kamen. Međutim, u švedskom jeziku u to vrijeme, volfram se nije nazivao tim imenom, nego kalcij-volframat. U njemu je njemačko-švedski hemičar Carl Wilhelm Scheele 1781. godine otkrio do tada nepoznatu so. Čisti volfram su dobili 1783. godine španski naučnici braća Fausto i Juan José Elhuyar, vođeni Scheeleovim otkrićima, putem redukcije volfram-trioksida, a kojeg su dobili iz volframita.
Osobine
Fizičke
Volfram je srebreni, sjajni metal, u čistom stanju se lahko izvlači. Ima veoma veliku gustoću, tvrdoću i čvrstoću. Gustoća volframa je gotovo ravna gustoći zlata, a Brinelova tvrdoća mu iznosi 250 HB. Otpornost na izvlačenje volframa iznosi od 550-620 N/mm2 do 1920 N/mm.[5] Metal egzistira u stabilnoj kubičnoj-prostorno centriranoj α modifikaciji sa parametrom rešetke od 316 pm pri sobnoj temperaturi.[6] Ova vrsta kristalne strukture se često naziva i volframska vrsta. Kod neke supstance za koju se kaže da ima metastabilnu β-modifikaciju volframa (izobličenu kubičnu prostorno-centriranu), radi se zapravo o oksidu bogatim volframom W3O.[7]
Volfram ima najvišu tačku topljenja od 3422 °C kao i najvišu tačku ključanja od 5930 °C[3] od svih hemijskih elemenata. Jedino se ugljik ne topi, ali na temperaturi od 3642 °C sublimira direktno u gasovito stanje.
Volfram je supraprovodnik pri kritičnoj temperaturi od oko 15 mK.[7]
Hemijske
Volfram je hemijski vrlo otporan metal, kojeg na sobnoj temperaturi ne napadaju kiseline poput zlatotopke ili fluoridne kiseline. Međutim, može se rastvoriti u smjesi fluoridne i dušične kiseline te u istopljenoj smjesi alkalnih nitrata i karbonata.
Izotopi
Poznata su 33 izotopa volframa i pet nuklearnih izomera. Od njih se samo pet izotopa javlja u prirodi: 180W, 182W, 183W, 184W i 186W. Izotop volframa 184W je najviše zastupljen u prirodi. Svih pet prirodnih izotopa bi, teoretski, mogli biti nestabilni, pošto se tokom CRESST eksperimenta 2004. godine u Laboratoriji nazionali del Gran Sasso došlo do popratnog rezultata pri potrazi za tamnom materijom da se izotop 180W raspada alfa-raspadom.[8] U tom eksperimentu izračunato je njegovo vrijeme poluraspada od 1,8 triliona godina, a takav raspad se u normalnim laboratorijskim uslovima nije mogao dokazati. Radioaktivnost ovog prirodnog izotopa je tako malehna, da se za sve praktične svrhe može potpuno zanemariti. Pretpostavljeno vrijeme poluraspada kod druga četiri prirodna izotopa bi, po današnjem stanju nauke, moglo biti još i duže, oko osam triliona godina. Vještački radioaktivni izotopi volframa imaju vrlo kratka vremena poluraspada i kreću se od 0,9 ms kod 185W do 121,2 dana kod 181W.
Rasprostranjenost
Udio volframa u Zemljinoj kori se kreće oko 0,0001 g/t[9] odnosno oko 0,0064 posto po težini. Do danas ovaj metal nije pronađen u samorodnom obliku u prirodi. Međutim, ruska akademija nauka je 1995. godine objavila izvještaj o postojanju samorodnog volframa, mada to otkriće nije potvrđeno od strane Međunarodne minerološke organizacije (IMA) i njene komisije za nove minerale, nomenklaturu i klasifikaciju (CNMNC).[10] Poznati su mnogi minerali volframa, uglavnom oksida te volframata. Najvažnije rude volframa su volframit (Mn, Fe)WO4 i šelit CaWO4. Osim njih, postoje i drugi volframovi minerali poput štolcita PbWO4 i tuneptita WO3 · H2O.
Najveća svjetska nalazišta volframa nalaze se u Kini, Peruu, SAD-u, Koreji, Boliviji, Kazahstanu, Rusiji, Austriji i Portugalu. U Njemačkoj, volframova ruda može se pronaći u "Rudnom gorju" Erzgebirge. Dokazane i vjerovatne svjetske rezerve čistog volframa iznose oko 2,9 miliona tona. U Evropi najpoznatije nalazište volframa nalazi se u dolini Felbertal u austrijskoj saveznoj pokrajini Salzburg.
Dobijanje
Svjetska proizvodnja čistog volframa 2006. godine iznosila je 73.300 tona[11]. Ubjedljivo najveći svjetski proizvođač volframa je Kina, gdje se proizvodi više od 80% ovog metala. Države sa najvećom proizvodnjom volframa u 2006. godini bile su:[11]
Volfram se ne može dobiti redukcijom sa ugljom iz oksidnih ruda, jer tom reakcijom nastaje volfram-karbid.
Dodavanjem rastvora amonijaka nastaje kompleks u obliku amonij-paravolframata (APW). On se isfiltrira iz rastvora i zatim se na temperaturi 600 °C pretvara u relativno čisti volfram-trioksid. Žarenjem se iz njega dobija volfram(VI)-oksid (WO3) koji se pri temperaturi od 800 °C u atmosferi vodika reducira do čeličnosivog volframa:
Ovim postupkom nastaje sivi prah volframa, koji se najčešće zgrušnjava u kalupima te se sinteruje u šipke pomoću električne struje. Na temperaturama preko 3400 °C kompaktni metal volframa se može istopiti u posebnim elektrolučnim pećima u reduciranoj atmosferi vodika.[12]
Upotreba
Oko 90% svjetske proizvodnje volframa se koristi za proizvodnju ferovolframa odnosno volframovog čelika.[13] Volframov čelik (visokolegirani čelik volframom) se osnovni materijal za alatne čelike. Volfram u njima služi za stvaranje volfram-karbida da bi se pri upotrebi povećala njihova sekundarna čvrstoća. Zbog svoje visoke tačke topljenja, volfram je jedan od najznačajnijih materijala za proizvodnju volfram-molibden legura za lopatice turbina u takozvanoj hot-sekciji turbine u svakom pogonskom motoru mlaznih aviona.
Najpoznatija upotreba čistog volframa je u industriji rasvjetnih tijela i sijalica kao filament (žareća nit) u sijalicama i kao elektroda u gasnim lampama i elektronskim cijevima.
U sijalicama najviše dolazi do izražaja što je električna provodljivost volframa značajno niža nego kod drugih provodničkih metala poput bakra i aluminija. Pri tome se tanke žareće niti od volframa toliko usiju, da emituju jako svijetlo, dok se kod debljih provodnika od drugih provodničkih materijala gotovo ikako zagriju.
Zbog njegove velike gustoće, koristi se kao zaštita od zračenja. Iako ima veću gustoću a time i bolje štiti od zračenja od olova, ali se u ove svrhe mnogo manje koristi od njega, jer je dosta skuplji i teže se obrađuje od olova. Iz istog razloga velike gustoće volframa, koristi se u nekim svjetskim vojskama za proizvodnju jezgra projektila u obliku volfram karbida umjesto osiromašenog uranija koji je u vojno-tehničkom pogledu smrtonosniji, ali je ujedno i radioaktivan i otrovan. U Drugom svjetskom ratu Njemačka je prvi put koristila kinetički penetrator napravljen od volframa, a i danas se on koristi u Bundeswehru. Nacistički režim se snažno zalagao da dođe do velikih količina volframa kojeg su smatrali važnim za ratne svrhe. U to vrijeme Portugal je izvozio volfram i Saveznicima i Njemačkoj.[14]
Volfram se može primijeniti i kao materijal za aparature u hemijskim postrojenjima, jer je vrlo otporan na koroziju. Međutim, njegova primjena u te svrhe je relativno rijetka, jer se volfram vrlo slabo može obrađivati. Da bi se predmet od volframa zavario, neophodno je koristiti laserske ili elektronske zrake. Slične poteškoće proizilaze pri upotrebi volframa u oblasti medicinske tehnike.
Osim toga, elektrode za zavarivanje se izrađuju od volframa, naprimjer kada je potrebno zavariti predmet od bakra, bronze ili mesinga. Osim toga elektrode u univerzalnom GTAW procesu zavarivanja (zavarivanje volframom u atmosferi inertnog gasa) napravljene su od volframa ili neke njegove legure. Te elektrode se pri procesu zavarivanja ne tope. Svjetlosni luk koji nastaje pri zavarivanju gori u obliku plazme u zaštitnoj atmosferi između elektrode i predmeta koji se zavaruje. Materijal kojim se ispunjavaju šupljine odvojeno se dodaje u obliku štapića.
U sportu volfram je našao primjenu u izradi visoko vrijednih drški strelica za pikado, vrhova strijela u streličarstvu, glava čekića za bacanje kladiva, da bi se smanjio otpor zraka i promjer rotacije. U Formuli 1 dodatna težina bolida se postiže stavljanjem volframskih ploča, da bi se, po pravilima za sezonu 2013., zadovoljila minimalna težina bolida (uključujući gorivo, kočione i rashladne tekućine, sa vozačem i njegovom opremom) koja iznosi 642 kg.[15] Nedavno su se počeli koristiti stabilizatori jedrilica načinjeni od volframa, da bi se smanjio otpor vode u odnosu na klasične stabilizatore od olova ili lijevanog željeza. Pored toga već postoje teniski reketi u čije se okvire od ugljika ubacuju vlakna od volframa. Time se mogu tačno određeni dijelovi rama reketa dodatno stabilizirati te poboljšati preciznost udarca.
Zbog slične gustoće volframa i zlata, postoje brojni izvještaji da se volfram često koristi za falsificiranje zlatnih poluga, tako što se jezgro od volframa oblaže tankim slojem zlata.[16]
Kod mušičarenja (ribolov) umjetni mamci poput nimfi ili kedera se otežavaju volframskim utezima da bi mamci prije i dublje potonuli.
Strune za muzičke instrumente se jednim dijelom ojačavaju volframom, da bi im se povećala težina i na taj način smanjila visina tona.
Volfram je našao primjenu i u rendgenskoj dijagnostici kao ciljni materijal na anodi. - i linije karakterističnog rendgenskog zračenja iznose 59 keV odnosno 67 keV.
U rasterskoj tunelskoj mikroskopiji volfram se često koristi kao materijal za vrhove sondi.
Početkom 21. vijeka volfram-karbid pogrešno nazvan volfram, prerađuje se kao nakit (tungstenov nakit) u obliku prstenja. Ovo se vrlo lahko može provjeriti mjerenjem njegove gustoće i čvrstoće. Volfram karbid (WC) ima Mohsovu tvrdoću od 9,5 dok čisti volfram ima 7,5. Do danas se gotovo sav nakit koji se ovako deklarira izrađuje od volfram-karbida.
Spojevi
Oksidi
Volfram gradi mnoge okside.[17] Između početnog člana:
Volfram oksid hidroksid određenog sastava i sa oksidacijskim brojevima između 5 i 6 je plave boje. Oni se općenito nazivaju volframsko plavo, a nerijetko se u mnogi slučajevima zamjenjuje sa molibden plavom. Volframsko plavo služi i kao indikator prisutnosti volframata iz kojih i nastaje putem redukcije.[17]
Volfram bronza MxWO3; gdje je M= alkalni, zemnoalkalni metal ili lantanoid, oko 0,3 < x < 0,9 posjeduje osobine električne provodljivosti i intenzivno je obojen u zavisnosti od udjela metala.
Volfram-disulfid WS2 našao je upotrebu kao sredstvo za suho podmazivanje (slično kao MoS2)
Fiziologija
Volfram se smatra pozitivnim bioelementom naročito u enzimima koje stvara anaerobna bakterijaEubacterium acidaminophilum u obliku kofaktora. E. acidaminophilum je bakterija koja ima sposobnost prerađivanja nekih aminokiselina, gdje ona koristi volfram u enzimima formiat-dehidrogenazi i aldehid-dehidrogenazi. U ovim organizmima volfram zamjenjuje molibden, jer je volfram daleko rasprostranjeniji u njenom prirodnom okruženju (vulkanskim kraterima na morskom dnu).[18][19][20]
Toksikologija
Po sadašnjem stanju nauke, volfram i njegovi spojevi se smatraju fiziološki bezopasni. Slučajevi karcinoma pluća koji su zabilježeni kod radnika u preradi i obradi metala volframa, pripisani su uvijek prisutnom kobaltu.[21] U eksperimentima na životinjama dokazano je da najveći dio volframa i volframovih spojeva koji se unesu peroralno u organizam, vrlo brzo se izluče putem urina. Samo mali dio volframa dospijeva u krvnu plazmu i tamo prelazi u eritrocite. Konačno, volfram putem krvi dolazi do kostiju i bubrega i tamo se deponuje. Čak i tri mjeseca nakon unošenja volframa u organizam najveći dio unijetog volframa i dalje se može dokazati sadržan u kostima.[22]
U gradu Fallon u Nevadi 2003. godine otkriveno je 16 slučajeva djece koja su od 1997. godine oboljela od leukemije, a u gradu Sierra Vista u Arizoni bilo je devet takvih slučajeva. U tom području, nazvanim karcinomsko žarište, odnosno lokalno područje sa nadprosječnim brojem slučajeva pojave karcinoma, dokazano je da je voda za piće imala izuzetno visoke koncentracije volframa. Nakon istrage, u urinu osoba sa tog područja dokazane su značajno povećane koncentracije volframa. Oba grada su poznata po svojim nalazištima rude volframa.[23][24] U ispitivanjima koja su trajala gotovo godinu dana, CDC (Centar za kontrolu bolesti) nije uspio dokazati direktnu uzajamnu vezu između volframa i slučajeva leukemije. Volfram ni u jednom testu nije pokazao kancerogeno djelovanje, a u drugim gradovima u Nevadi kod osoba sa sličnim nivoima volframa u urinu nije dijagnosticiran nijedan slučaj raka.
Reference
^Harry H. Binder (1999). Lexikon der chemischen Elemente. Stuttgart: S. Hirzel Verlag. ISBN3-7776-0736-3.
^N. N. Greenwood; A. Earnshaw (1988). Chemie der Elemente (1 izd.). Weinheim: VCH. str. 1291. ISBN3-527-26169-9.CS1 održavanje: više imena: authors list (link)
^ abcYiming Zhang, Julian R. G. Evans, Shoufeng Yang: Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks. u: Journal of Chemical & Engineering Data. 56, 2011, str. 328–337, doi:10.1021/je1011086
^Elmar Seebold, ured. (2002). Kluge: Etymologisches Wörterbuch der deutschen Sprache (24 izd.). Berlin: Walter de Gruyter. str. 995–996. ISBN3-11-017473-1.
^Bevers LE, Hagedoorn PL, Hagen WR (2009). "The bioinorganic chemistry of tungsten". Coord. Chem. Rev. 253: 269–290.CS1 održavanje: više imena: authors list (link)