Taxicab geometry

In taxicab geometry, the lengths of the red, blue, green, and yellow paths all equal 12, the taxicab distance between the opposite corners, and all four paths are shortest paths. Instead, in Euclidean geometry, the red, blue, and yellow paths still have length 12 but the green path is the unique shortest path, with length equal to the Euclidean distance between the opposite corners, 6√2 ≈ 8.49.

Taxicab geometry or Manhattan geometry is geometry where the familiar Euclidean distance is ignored, and the distance between two points is instead defined to be the sum of the absolute differences of their respective Cartesian coordinates, a distance function (or metric) called the taxicab distance, Manhattan distance, or city block distance. The name refers to the island of Manhattan, or generically any planned city with a rectangular grid of streets, in which a taxicab can only travel along grid directions. In taxicab geometry, the distance between any two points equals the length of their shortest grid path. This different definition of distance also leads to a different definition of the length of a curve, for which a line segment between any two points has the same length as a grid path between those points rather than its Euclidean length.

The taxicab distance is also sometimes known as rectilinear distance or L1 distance (see Lp space).[1] This geometry has been used in regression analysis since the 18th century, and is often referred to as LASSO. Its geometric interpretation dates to non-Euclidean geometry of the 19th century and is due to Hermann Minkowski.

In the two-dimensional real coordinate space , the taxicab distance between two points and is . That is, it is the sum of the absolute values of the differences in both coordinates.

Formal definition

The taxicab distance, , between two points in an n-dimensional real coordinate space with fixed Cartesian coordinate system, is the sum of the lengths of the projections of the line segment between the points onto the coordinate axes. More formally,For example, in , the taxicab distance between and is

History

The L1 metric was used in regression analysis, as a measure of goodness of fit, in 1757 by Roger Joseph Boscovich.[2] The interpretation of it as a distance between points in a geometric space dates to the late 19th century and the development of non-Euclidean geometries. Notably it appeared in 1910 in the works of both Frigyes Riesz and Hermann Minkowski. The formalization of Lp spaces, which include taxicab geometry as a special case, is credited to Riesz.[3] In developing the geometry of numbers, Hermann Minkowski established his Minkowski inequality, stating that these spaces define normed vector spaces.[4]

The name taxicab geometry was introduced by Karl Menger in a 1952 booklet You Will Like Geometry, accompanying a geometry exhibit intended for the general public at the Museum of Science and Industry in Chicago.[5]

Properties

Thought of as an additional structure layered on Euclidean space, taxicab distance depends on the orientation of the coordinate system and is changed by Euclidean rotation of the space, but is unaffected by translation or axis-aligned reflections. Taxicab geometry satisfies all of Hilbert's axioms (a formalization of Euclidean geometry) except that the congruence of angles cannot be defined to precisely match the Euclidean concept, and under plausible definitions of congruent taxicab angles, the side-angle-side axiom is not satisfied as in general triangles with two taxicab-congruent sides and a taxicab-congruent angle between them are not congruent triangles.

Spheres

Grid points on a circle in taxicab geometry as the grid is made finer

In any metric space, a sphere is a set of points at a fixed distance, the radius, from a specific center point. Whereas a Euclidean sphere is round and rotationally symmetric, under the taxicab distance, the shape of a sphere is a cross-polytope, the n-dimensional generalization of a regular octahedron, whose points satisfy the equation:

where is the center and r is the radius. Points on the unit sphere, a sphere of radius 1 centered at the origin, satisfy the equation

In two dimensional taxicab geometry, the sphere (called a circle) is a square oriented diagonally to the coordinate axes. The image to the right shows in red the set of all points on a square grid with a fixed distance from the blue center. As the grid is made finer, the red points become more numerous, and in the limit tend to a continuous tilted square. Each side has taxicab length 2r, so the circumference is 8r. Thus, in taxicab geometry, the value of the analog of the circle constant π, the ratio of circumference to diameter, is equal to 4.

A closed ball (or closed disk in the 2-dimensional case) is a filled-in sphere, the set of points at distance less than or equal to the radius from a specific center. For cellular automata on a square grid, a taxicab disk is the von Neumann neighborhood of range r of its center.

A circle of radius r for the Chebyshev distance (L metric) on a plane is also a square with side length 2r parallel to the coordinate axes, so planar Chebyshev distance can be viewed as equivalent by rotation and scaling to planar taxicab distance. However, this equivalence between L1 and L metrics does not generalize to higher dimensions.

Whenever each pair in a collection of these circles has a nonempty intersection, there exists an intersection point for the whole collection; therefore, the Manhattan distance forms an injective metric space.

Arc length

Let be a continuously differentiable function. Let be the taxicab arc length of the graph of on some interval . Take a partition of the interval into equal infinitesimal subintervals, and let be the taxicab length of the subarc. Then[6]

By the mean value theorem, there exists some point between and such that .[7] Then the previous equation can be written

Then is given as the sum of every partition of on as they get arbitrarily small.

Curves defined by monotone increasing or decreasing functions have the same taxicab arc length as long as they share the same endpoints.

To test this, take the taxicab circle of radius centered at the origin. Its curve in the first quadrant is given by whose length is

Multiplying this value by to account for the remaining quadrants gives , which agrees with the circumference of a taxicab circle.[8] Now take the Euclidean circle of radius centered at the origin, which is given by . Its arc length in the first quadrant is given by

Accounting for the remaining quadrants gives again. Therefore, the circumference of the taxicab circle and the Euclidean circle in the taxicab metric are equal.[9] In fact, for any function that is monotonic and differentiable with a continuous derivative over an interval , the arc length of over is .[10]

Triangle congruence

Two taxicab right isoceles triangles. Three angles and two legs are congruent, but the triangles are not congruent. Therefore, ASASA is not a congruence theorem in taxicab geometry.

Two triangles are congruent if and only if three corresponding sides are equal in distance and three corresponding angles are equal in measure. There are several theorems that guarantee triangle congruence in Euclidean geometry, namely Angle-Angle-Side (AAS), Angle-Side-Angle (ASA), Side-Angle-Side (SAS), and Side-Side-Side (SSS). In taxicab geometry, however, only SASAS guarantees triangle congruence.[11]

Take, for example, two right isosceles taxicab triangles whose angles measure 45-90-45. The two legs of both triangles have a taxicab length 2, but the hypotenuses are not congruent. This counterexample eliminates AAS, ASA, and SAS. It also eliminates AASS, AAAS, and even ASASA. Having three congruent angles and two sides does not guarantee triangle congruence in taxicab geometry. Therefore, the only triangle congruence theorem in taxicab geometry is SASAS, where all three corresponding sides must be congruent and at least two corresponding angles must be congruent.[12] This result is mainly due to the fact that the length of a line segment depends on its orientation in taxicab geometry.

Applications

Compressed sensing

In solving an underdetermined system of linear equations, the regularization term for the parameter vector is expressed in terms of the norm (taxicab geometry) of the vector.[13] This approach appears in the signal recovery framework called compressed sensing.

Differences of frequency distributions

Taxicab geometry can be used to assess the differences in discrete frequency distributions. For example, in RNA splicing positional distributions of hexamers, which plot the probability of each hexamer appearing at each given nucleotide near a splice site, can be compared with L1-distance. Each position distribution can be represented as a vector where each entry represents the likelihood of the hexamer starting at a certain nucleotide. A large L1-distance between the two vectors indicates a significant difference in the nature of the distributions while a small distance denotes similarly shaped distributions. This is equivalent to measuring the area between the two distribution curves because the area of each segment is the absolute difference between the two curves' likelihoods at that point. When summed together for all segments, it provides the same measure as L1-distance.[14]

See also

Comparison of Chebyshev, Euclidean and taxicab distances for the hypotenuse of a 3-4-5 triangle on a chessboard

References

  1. ^ Black, Paul E. "Manhattan distance". Dictionary of Algorithms and Data Structures. Retrieved October 6, 2019.
  2. ^ Stigler, Stephen M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900. Harvard University Press. ISBN 9780674403406. Retrieved October 6, 2019.
  3. ^ Riesz, Frigyes (1910). "Untersuchungen über Systeme integrierbarer Funktionen". Mathematische Annalen (in German). 69 (4): 449–497. doi:10.1007/BF01457637. hdl:10338.dmlcz/128558. S2CID 120242933.
  4. ^ Minkowski, Hermann (1910). Geometrie der Zahlen (in German). Leipzig and Berlin: R. G. Teubner. JFM 41.0239.03. MR 0249269. Retrieved October 6, 2019.
  5. ^ Menger, Karl (1952). You Will Like Geometry. A Guide Book for the Illinois Institute of Technology Geometry Exhibition. Chicago: Museum of Science and Industry.
    Golland, Louise (1990). "Karl Menger and Taxicab Geometry". Mathematics Magazine. 63 (5): 326–327. doi:10.1080/0025570x.1990.11977548.
  6. ^ Heinbockel, J.H. (2012). Introduction to Calculus Volume II. Old Dominion University. pp. 54–55.
  7. ^ Penot, J.P. (1988-01-01). "On the mean value theorem". Optimization. 19 (2): 147–156. doi:10.1080/02331938808843330. ISSN 0233-1934.
  8. ^ Petrović, Maja; Malešević, Branko; Banjac, Bojan; Obradović, Ratko (2014). Geometry of some taxicab curves. 4th International Scientific Conference on Geometry and Graphics. Serbian Society for Geometry and Graphics, University of Niš, Srbija. arXiv:1405.7579.
  9. ^ Kemp, Aubrey (2018). Generalizing and Transferring Mathematical Definitions from Euclidean to Taxicab Geometry (PhD thesis). Georgia State University. doi:10.57709/12521263.
  10. ^ Thompson, Kevin P. (2011). "The Nature of Length, Area, and Volume in Taxicab Geometry". International Electronic Journal of Geometry. 4 (2): 193–207. arXiv:1101.2922.
  11. ^ Mironychev, Alexander (2018). "SAS and SSA Conditions for Congruent Triangles". Journal of Mathematics and System Science. 8 (2): 59–66.
  12. ^ THOMPSON, KEVIN; DRAY, TEVIAN (2000). "Taxicab Angles and Trigonometry". Pi Mu Epsilon Journal. 11 (2): 87–96. ISSN 0031-952X. JSTOR 24340535.
  13. ^ Donoho, David L. (March 23, 2006). "For most large underdetermined systems of linear equations the minimal -norm solution is also the sparsest solution". Communications on Pure and Applied Mathematics. 59 (6): 797–829. doi:10.1002/cpa.20132. S2CID 8510060.
  14. ^ Lim, Kian Huat; Ferraris, Luciana; Filloux, Madeleine E.; Raphael, Benjamin J.; Fairbrother, William G. (July 5, 2011). "Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes". Proceedings of the National Academy of Sciences of the United States of America. 108 (27): 11093–11098. Bibcode:2011PNAS..10811093H. doi:10.1073/pnas.1101135108. PMC 3131313. PMID 21685335.

Further reading


Read other articles:

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus konten yang dianggap sebagai spam dan pranala luar yang tidak sesuai, dan tambahkan konten ensiklopedis yang ditulis dari sudut pandang netral dan sesuai dengan kebijakan ...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

Портрет императора Луция Вера как арвальского брата (около 160 года н. э.) Арва́льские бра́тья (лат. Fratres Arvales, «бра́тья-па́хари» от лат. arvum — пашня) — римская коллегия 12 жрецов. В обязанности её входили молитвы богам о ниспослании урожая и процветании общины гр�...

Danau BaturDanau BaturLetakKintamani, Kabupaten Bangli, Bali, IndonesiaKoordinat08°15′30″S 115°24′30″E / 8.25833°S 115.40833°E / -8.25833; 115.40833Koordinat: 08°15′30″S 115°24′30″E / 8.25833°S 115.40833°E / -8.25833; 115.40833Jenis perairanPolimiktik, danau kawahPanjang maksimal2,5 km (1,6 mi)Lebar maksimal7,5 km (4,7 mi)Area permukaan15,9 km2 (3.900 ekar)Kedalaman maksimal88 m (289 ft)...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Lazimi atau wirid lazim (Arab: الْوِرْدُ اللَّازِمُcode: ar is deprecated ) adalah litani biasa yang dipraktikkan oleh para pengikut dalam sufisme di tarekat Tijaniyah. Praktiknya diadakan secara individu.[1][2] Prese...

 

 

Daftar keuskupan di Amerika adalah sebuah daftar yang memuat dan menjabarkan pembagian terhadap wilayah administratif Gereja Katolik Roma yang dipimpin oleh seorang uskup ataupun ordinaris di Benua Amerika. Konferensi para uskup Amerika Latin bergabung dalam Konferensi Waligereja Amerika Latin.[1] Amerika Serikat Artikel utama: Daftar keuskupan di Amerika Serikat Provinsi Gerejawi Anchorage Keuskupan Agung Anchorage Keuskupan Fairbanks Keuskupan Juneau Provinsi Gerejawi Atlanta Keusku...

2010 single by Enrique Iglesias HeartbeatSingle by Enrique Iglesias featuring Nicole Scherzingerfrom the album Euphoria Released8 June 2010 (2010-06-08)Recorded2009StudioSouth Point (Miami, Florida)GenreElectropop[1]Length4:15 (album version)3:50 (radio edit)LabelUniversal RepublicSongwriter(s)Enrique IglesiasJamie ScottMark TaylorProducer(s)Mark TaylorEnrique Iglesias singles chronology I Like It (2010) Heartbeat (2010) No Me Digas Que No (2010) Nicole Scherzinger&...

 

 

Strada R504 KolymaLocalizzazioneStato Russia Circondari federaliSacha-Jacuzia Soggetti federaliOblast' di Magadan DatiClassificazionestrada federale InizioNižnij Bestjach FineMagadan Lunghezza2.036 km Data apertura2008 Percorso Manuale Il ponte sulla Kolyma La strada R504 «Kolyma», nota anche come strada delle Ossa, è una strada federale russa di collegamento fra le città di Magadan, sul mare di Ochotsk, e Nižnij Bestjach, situata sulla riva orientale della Lena di fronte a Jakutsk...

 

 

Safita (ar) صافيتا Administration Pays Syrie Muhafazah (محافظة) Tartous Démographie Population 32 213 hab. (2009) Géographie Coordonnées 34° 49′ 00″ nord, 36° 07′ 00″ est Altitude 303 m Localisation Géolocalisation sur la carte : Syrie Safita modifier  La ville de Safita (صافيتا en arabe) est située au nord-ouest de la Syrie actuelle, plus précisément au sud-est de Tartous et au nord-ouest du Krak des C...

Olympic gymnastics event Men's vaultat the Games of the XXII OlympiadNikolai Andrianov (c. 1974)VenueLuzhniki Palace of SportsDate20–25 JulyCompetitors65 from 14 nationsWinning score19.825Medalists Nikolai Andrianov Soviet Union Alexander Dityatin Soviet Union Roland Brückner East Germany← 19761984 → Gymnastics at the1980 Summer OlympicsList of gymnastsArtisticTeam all-aroundmenwomenIndividual all-aroundmenwomenVaultmenwomenFloormenwomenPommel...

 

 

2015 concert tour by Robbie Williams Let Me Entertain You TourTour by Robbie WilliamsPromotional poster for the tourStart date25 March 2015End date3 November 2015Legs4No. of shows28 in Europe2 in Asia12 in Australia42 totalRobbie Williams concert chronology Swings Both Ways Live(2014) Let Me Entertain You Tour(2015) The Heavy Entertainment Show Tour(2017–18) The Let Me Entertain You Tour[1] was the eleventh concert tour by English recording artist, Robbie Williams. The tour began in...

 

 

Rodellocomune Rodello – VedutaVista di Rodello LocalizzazioneStato Italia Regione Piemonte Provincia Cuneo AmministrazioneSindacoFranco Aledda (lista civica) dal 26-5-2014 TerritorioCoordinate44°37′42.74″N 8°03′24.62″E / 44.62854°N 8.056838°E44.62854; 8.056838 (Rodello)Coordinate: 44°37′42.74″N 8°03′24.62″E / 44.62854°N 8.056838°E44.62854; 8.056838 (Rodello) Altitudine537 m s.l.m. Superficie8,9 ...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

Kontributor utama artikel ini tampaknya memiliki hubungan dekat dengan subjek. Artikel ini mungkin perlu dirapikan agar mematuhi kebijakan konten Wikipedia, terutama dalam hal sudut pandang netral. Silakan dibahas lebih lanjut di halaman pembicaraan artikel ini. (July 2017) (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Vossloh AGJenisAktiengesellschaftKode emitenFWB: VOSIndustriInfrastruktur relDidirikan1888PendiriEduard VosslohKantorpusatWerdohl, JermanTokohkunciAndreas...

Perang BoshinSamurai klan Satsuma, bertempur di pihak kekaisaran semasa Perang Boshin. Foto: Felice Beato.TanggalJanuari 1868 – Mei 1869LokasiJepangHasil Keshogunan Tokugawa berakhir;kembalinya kekuasaan di tangan kekaisaranPihak terlibat Kekaisaran Jepang Keshogunan Tokugawa Republik EzoTokoh dan pemimpin Pemimpin: Kaisar Meiji,Panglima: Saigō Takamori,AD: Kuroda Kiyotaka Keshogunan:Pemimpin: Tokugawa Yoshinobu,AD: Katsu Kaishu,AL: Enomoto Takeaki,Republik Ezo:Presiden:Enomoto Takeaki,Pan...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The article's lead section may need to be rewritten. Please help improve the lead and read the lead layout guide. (June 2013) (Learn how and when to remove this message) This article needs to be updated. Please help update this article to reflect recent events or newly available information. (June 2013) This article needs additional citatio...

 

 

Market town and civil parish in Lincolnshire, England This article is about the town in Lincolnshire. For other uses, see Sleaford (disambiguation). Town and civil parish in EnglandSleafordTown and civil parishClockwise from top: Aerial of Sleaford Castle site, Handley Monument, St Deny's Church, view across rooftops of Sleaford and Sessions House (on the right)SleafordLocation within LincolnshirePopulation19,807 (2021 Census)[1]OS grid referenceTF064455• London1...

مجلة Forza MilanForza Milan! (بالإيطالية)[1] معلومات عامةالنوع مجلة رياضيةبلد المنشأ  إيطاليا[1] التأسيس 1968 الاختفاء 2018 الثمن 3.5 € 34.99 € (اشتراك سنوي)شخصيات هامةرئيس التحرير فابريتسيو ميليجارييجوالتحريراللغة الإيطاليةالمواضيع كرة القدم الإدارةالمقر الرئيسي ميلانو، إيطال...

 

 

Cet article est une ébauche concernant l’histoire et la Syrie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Ne doit pas être confondu avec Djébel el-Druze. État des Druzes جبل الدروز 1921–1936 La Syrie mandataire. L'État des Druzes est en bleu.Informations générales Statut Mandat de la SDN pour la France Capitale Soueïda Langue(s) Français et arabe Religion Druze 84,8%Chrétien 13,8%Isla...