Riesz–Fischer theorem

In mathematics, the Riesz–Fischer theorem in real analysis is any of a number of closely related results concerning the properties of the space L2 of square integrable functions. The theorem was proven independently in 1907 by Frigyes Riesz and Ernst Sigismund Fischer.

For many authors, the Riesz–Fischer theorem refers to the fact that the Lp spaces from Lebesgue integration theory are complete.

Modern forms of the theorem

The most common form of the theorem states that a measurable function on is square integrable if and only if the corresponding Fourier series converges in the Lp space This means that if the Nth partial sum of the Fourier series corresponding to a square-integrable function f is given by where the nth Fourier coefficient, is given by then where is the -norm.

Conversely, if is a two-sided sequence of complex numbers (that is, its indices range from negative infinity to positive infinity) such that then there exists a function f such that f is square-integrable and the values are the Fourier coefficients of f.

This form of the Riesz–Fischer theorem is a stronger form of Bessel's inequality, and can be used to prove Parseval's identity for Fourier series.

Other results are often called the Riesz–Fischer theorem (Dunford & Schwartz 1958, §IV.16). Among them is the theorem that, if A is an orthonormal set in a Hilbert space H, and then for all but countably many and Furthermore, if A is an orthonormal basis for H and x an arbitrary vector, the series converges commutatively (or unconditionally) to x. This is equivalent to saying that for every there exists a finite set in A such that for every finite set B containing B0. Moreover, the following conditions on the set A are equivalent:

  • the set A is an orthonormal basis of H
  • for every vector

Another result, which also sometimes bears the name of Riesz and Fischer, is the theorem that (or more generally ) is complete.

Example

The Riesz–Fischer theorem also applies in a more general setting. Let R be an inner product space consisting of functions (for example, measurable functions on the line, analytic functions in the unit disc; in old literature, sometimes called Euclidean Space), and let be an orthonormal system in R (e.g. Fourier basis, Hermite or Laguerre polynomials, etc. – see orthogonal polynomials), not necessarily complete (in an inner product space, an orthonormal set is complete if no nonzero vector is orthogonal to every vector in the set). The theorem asserts that if the normed space R is complete (thus R is a Hilbert space), then any sequence that has finite norm defines a function f in the space R.

The function f is defined by limit in R-norm.

Combined with the Bessel's inequality, we know the converse as well: if f is a function in R, then the Fourier coefficients have finite norm.

History: the Note of Riesz and the Note of Fischer (1907)

In his Note, Riesz (1907, p. 616) states the following result (translated here to modern language at one point: the notation was not used in 1907).

Let be an orthonormal system in and a sequence of reals. The convergence of the series is a necessary and sufficient condition for the existence of a function f such that

Today, this result of Riesz is a special case of basic facts about series of orthogonal vectors in Hilbert spaces.

Riesz's Note appeared in March. In May, Fischer (1907, p. 1023) states explicitly in a theorem (almost with modern words) that a Cauchy sequence in converges in -norm to some function In this Note, Cauchy sequences are called "sequences converging in the mean" and is denoted by Also, convergence to a limit in –norm is called "convergence in the mean towards a function". Here is the statement, translated from French:

Theorem. If a sequence of functions belonging to converges in the mean, there exists in a function f towards which the sequence converges in the mean.

Fischer goes on proving the preceding result of Riesz, as a consequence of the orthogonality of the system, and of the completeness of

Fischer's proof of completeness is somewhat indirect. It uses the fact that the indefinite integrals of the functions gn in the given Cauchy sequence, namely converge uniformly on to some function G, continuous with bounded variation. The existence of the limit for the Cauchy sequence is obtained by applying to G differentiation theorems from Lebesgue's theory.
Riesz uses a similar reasoning in his Note, but makes no explicit mention to the completeness of although his result may be interpreted this way. He says that integrating term by term a trigonometric series with given square summable coefficients, he gets a series converging uniformly to a continuous function F  with bounded variation. The derivative f  of F, defined almost everywhere, is square summable and has for Fourier coefficients the given coefficients.

Completeness of Lp,  0 < p ≤ ∞

For some authors, notably Royden,[1] the Riesz-Fischer Theorem is the result that is complete: that every Cauchy sequence of functions in converges to a function in under the metric induced by the p-norm. The proof below is based on the convergence theorems for the Lebesgue integral; the result can also be obtained for by showing that every Cauchy sequence has a rapidly converging Cauchy sub-sequence, that every Cauchy sequence with a convergent sub-sequence converges, and that every rapidly Cauchy sequence in converges in

When the Minkowski inequality implies that the Lp space is a normed space. In order to prove that is complete, i.e. that is a Banach space, it is enough (see e.g. Banach space#Definition) to prove that every series of functions in such that converges in the -norm to some function For the Minkowski inequality and the monotone convergence theorem imply that is defined –almost everywhere and The dominated convergence theorem is then used to prove that the partial sums of the series converge to f in the -norm,

The case requires some modifications, because the p-norm is no longer subadditive. One starts with the stronger assumption that and uses repeatedly that The case reduces to a simple question about uniform convergence outside a -negligible set.

See also

References

  1. ^ Royden, H. L. (13 February 2017). Real analysis. Fitzpatrick, Patrick, 1946- (Fourth ed.). New York, New York. ISBN 9780134689494. OCLC 964502015.{{cite book}}: CS1 maint: location missing publisher (link)
  • Beals, Richard (2004), Analysis: An Introduction, New York: Cambridge University Press, ISBN 0-521-60047-2.
  • Dunford, N.; Schwartz, J.T. (1958), Linear operators, Part I, Wiley-Interscience.
  • Fischer, Ernst (1907), "Sur la convergence en moyenne", Comptes rendus de l'Académie des sciences, 144: 1022–1024.
  • Riesz, Frigyes (1907), "Sur les systèmes orthogonaux de fonctions", Comptes rendus de l'Académie des sciences, 144: 615–619.

Read other articles:

Kepala tonggak bergaya Ionia, di kuil Athena Polias, Priene, Ionia, dalam ukiran abad 19. Dalam beberapa tradisi arsitektur termasuk arsitektur klasik, kepala tonggak atau kapital (Dari bahasa Latin caput, 'kepala') adalah bagian atas dari kolom atau pilaster. Kepala tonggak ada yang cembung, misalnya pada ordo Doria; cekung pada ordo Korintus; atau menggulung keluar pada ordo Ionia. Ketiganya adalah tiga bentuk dasar kapital. Referensi Lewis, Philippa & Gillian Darley (1986) Dictionary o...

 

 

Johann ZarcoZarco di Grand Prix San Marino 2022Kebangsaan PrancisLahir16 Juli 1990 (umur 33)Cannes, PrancisTim saat iniPramac RacingNo. motor5 Catatan statistik Karier Kejuaraan Dunia MotoGP Tahun aktif2017-sekarang PabrikanYamaha (2017-2018) KTM (2019)Honda (2019)Ducati (2020-sekarang) Juara dunia0Klasemen 20176th (174 pts) Start Menang Podium Pole F. lap Poin 19 0 3 3 4 182 Karier Kejuaraan Dunia Moto2Tahun aktif2012–2016 PabrikanMotobiSuterCaterham SuterKalex Juara dunia2 - (20...

 

 

2013 mixtape by LogicYoung Sinatra: Welcome to ForeverMixtape by LogicReleasedMay 7, 2013GenreHip hopLength73:55LabelVisionaryProducer Logic 6ix Swiff D C-Sick Don Cannon Key Wane Arthur McArthur Kevin Randolph No I.D. Logic chronology Young Sinatra: Undeniable(2012) Young Sinatra: Welcome to Forever(2013) Under Pressure(2014) Young Sinatra: Welcome to Forever is the fourth mixtape by American rapper Logic. It was released as a free online download by Visionary on May 7, 2013 and is t...

Astrakhan kotakota besarwilayah administratifpelabuhan Астрахань (ru) flags of Astrakhan (en) Tempat Negara berdaulatRusiaOblast di RusiaOblast AstrakhanUrban okrug in Russia (en)Astrakhan Urban Okrug (en) Ibu kota dariOblast Astrakhan Astrakhan Urban Okrug (en) Astrakhan Governorate (en) Astrakhan Okrug (en) (1928–1930)Astrakhan Okrug (en) (1937–1943)Caucasus Viceroyalty (en) (1790–1796) NegaraRusia Pembagian administratifLeninsky District (en) Kirovsky City Distri...

 

 

American actor and author (b. 1946) Demond WilsonWilson (left) (as Lamont Sanford) in 1972,with Redd Foxx (as Fred Sanford)BornGrady Demond Wilson (1946-10-13) October 13, 1946 (age 77)Valdosta, Georgia, U.S.[1]Occupation(s)Actor, authorYears active1968–presentSpouse Cicely Johnston ​(m. 1974)​[2]Children6 Grady Demond Wilson[3] (born October 13, 1946) is an American actor and author. The year he turned the age of 26, he began p...

 

 

Agnes dari Jerman Nama dalam bahasa asli(de) Agnes von Waiblingen BiografiKelahiran1072 (Kalender Masehi Gregorius) Kematian24 September 1143 (Kalender Masehi Gregorius) (70/71 tahun)Klosterneuburg Tempat pemakamanBiara Klosterneuburg Galat: Kedua parameter tahun harus terisi! KegiatanPekerjaanaristokrat Lain-lainGelar bangsawanRatu Galat: Kedua parameter tahun harus terisi!Duchess (en) Galat: Kedua parameter tahun harus terisi! KeluargaDinasti Sali Pasangan nikahFrederick I, Duke of Swabia (...

This article is about the lake in California. For the lake in British Columbia, see Cunningham Lake. For the lake in the Bahamas, see Lake Cunningham (Bahamas). Retention basin in East San Jose, CaliforniaLake CunninghamLake CunninghamShow map of CaliforniaLake CunninghamShow map of the United StatesLocationEast San Jose, CaliforniaCoordinates37°20′12″N 121°48′30″W / 37.336615°N 121.808317°W / 37.336615; -121.808317TypeRetention basinBasin countriesUni...

 

 

Giuseppe BertoLahir(1914-12-27)27 Desember 1914Mogliano Veneto, ItaliaMeninggal1 November 1978(1978-11-01) (umur 63)Roma, ItaliaPekerjaanNovelis dan penulis naskahTahun aktif1947–1978 Giuseppe Berto (27 Desember 1914 – 1 November 1978) adalah seorang penulis dan penulis naskah asal Italia. Ia dikenal karena membuat novel-novel berjudul Il cielo è rosso (The Sky Is Red) dan Il male oscuro. Filmografi pilihan Eleonora Duse (1947) La tua donna (1954) The Wanderers (...

 

 

International Catholic organization Heralds of the GospelEvangelii PraeconesAbbreviationEPFormation1999 (as civic organization) 2001 (as religious order)FounderJoão Scognamiglio Clá DiasTypeCatholic religious orderHeadquartersBrazilWebsiteheraldosdelevangelio.com The Heralds of the Gospel (Portuguese: Arautos do Evangelho; Latin: Evangelii Praecones, abbreviated to EP)[1] is a Catholic International Association of Pontifical Right founded by Msgr. João Scognamiglio Clá Dias. It is...

Humphrey Fleming SenhouseLahir29 Juni 1781[1]BarbadosMeninggal13 Juni 1841 (umur 59)Hong Kong BritaniaDimakamkanPemakaman Protestan Tua, Santo António, Makau PortugisPengabdianInggrisDinas/cabangAngkatan Laut Britania RayaLama dinas1797–1841PangkatKapten Angkatan Laut Britania RayaWarsPerang NapoleonPerang 1812Perang Candu PertamaPenghargaanKnight Commander of the Hanoverian Guelphic Order (1832)Knight Bachelor (1834)Companion of the Most Honourable Military Order of the Bath...

 

 

Charles de La RochefoucauldBiographieNaissance 1520Décès 1583Activité OfficierFamille Maison de La RochefoucauldPère Antoine de La Rochefoucauld (d)Mère Antoinette d'AmboiseConjoint Françoise Chabot (d)Enfant Françoise de La Rochefoucauld, Dame de Barbézieux (d)Autres informationsGrade militaire Colonel généralDistinctions Chevalier de l'ordre du Saint-EspritChevalier de l'ordre de Saint-MichelBlasonmodifier - modifier le code - modifier Wikidata Charles de La Rochefoucauld dit Barb...

 

 

Vous lisez un « bon article » labellisé en 2011. Marie-Amélie du Brésil La princesse Marie-Amélie du Brésil par Friedrich Dürck (vers 1849). Biographie Titulature Princesse du Brésil Dynastie Maison de Bragance Nom de naissance Maria Amélia Augusta Eugênia Josefina Luísa Teodolinda Elói Francisco Xavier de Paula Gabriela Rafaela Gonzaga de Braganza Naissance 1er décembre 1831Paris (France) Décès 4 février 1853 (à 21 ans)Funchal (Portugal) Sépulture Couvent S...

South Korean comedian This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Lee Soo-geun – news · newspapers · books · scholar · JSTOR (May 2011) (Learn how and when to remove this message) In this Ko...

 

 

زمالة الجمعية الملكيةمعلومات عامةنوع الجائزة جائزة البلد المملكة المتحدة مقدمة من الجمعية الملكية تعديل - تعديل مصدري - تعديل ويكي بيانات مبنى الجمعية الملكية شعار النبالة للجمعية الملكية مبنى الجمعية الملكية زمالة الجمعية الملكية (FRS, ForMemRS & HonFRS) هي جائزة وزمالة تعطى من...

 

 

كان «مَعرض للوُحُوش» ملكي صغير في قصر فرساي خلال فترة حكم لويس الرابع عشر. مجموعة من الزرافات في حديقة حيوان ملكية مصغرة بفيينا. ذئب رمادي في إحدى حدائق الحيوان في الدنمارك. زوار يطعمون مجموعة من الزرافات في إحدى حدائق الحيوان المفتوحة في إنجلترا. إحدى الممرات في مَطير حديق...

Washington State House elections, 2012 ← 2010 November 6, 2012 2014 → 98 seats of the Washington State House of Representatives50 seats needed for a majority   Majority party Minority party   Leader Frank Chopp Richard DeBolt Party Democratic Republican Leader's seat 43rd-Seattle 20th-Centralia Last election 56 42 Seats won 55 43 Seat change 1 1 Popular vote 2,892,897 2,403,343 Percentage 53.3% 44.3% Swing 6.4% 7.3% Results:  ...

 

 

American politician (1934–2014) Jim JeffordsUnited States Senatorfrom VermontIn officeJanuary 3, 1989 – January 3, 2007Preceded byRobert StaffordSucceeded byBernie Sanders Committee positions1997–⁠2003 Chair of the Senate Environment and Public Works CommitteeIn officeJune 6, 2001 – January 3, 2003Preceded byBob SmithSucceeded byJim InhofeChair of the Senate Health, Education, Labor and Pensions CommitteeIn officeJanuary 20, 2001 – June 6, 2001Prece...

 

 

Island in Alaska, United StatesUmnakIslandMay 2014 NASA satellite photograph of UmnakUmnakCoordinates: 53°13′26″N 168°25′55″W / 53.22389°N 168.43194°W / 53.22389; -168.43194CountryUnited StatesStateAlaskaArchipelagoFox Islands of the Aleutian IslandsArea[1] • Total686.01 sq mi (1,776.8 km2) • Land686.01 sq mi (1,776.8 km2)Highest elevation7,051 ft (2,149 m)Population (2000) ...

Place in London, United Kingdom For the railway station, see Battersea Park railway station. For other uses, see Battersea Park (disambiguation). Battersea ParkBattersea ParkLocationBatterseaLondon, SW11United KingdomCoordinates51°28′45″N 0°09′26″W / 51.4793°N 0.1573°W / 51.4793; -0.1573Area200 acres (81 ha) (0.8 km²)Created1858Operated byWandsworth CouncilPublic transit access Battersea Park, Queenstown Road (Battersea) Battersea Park is a ...

 

 

Un'ombra nell'ombraUna scena del filmTitolo originaleUn'ombra nell'ombra Paese di produzioneItalia Anno1979 Durata106 min Genereorrore RegiaPier Carpi SoggettoPier Carpi SceneggiaturaPier Carpi ProduttorePiero Amati Casa di produzioneRassy Film,Aretusa Film Distribuzione in italianoCinehollywood FotografiaGuglielmo Mancori MontaggioManlio Camastro Musichemusiche composte da Stelvio Cipriani, eseguite dai Goblin (Claudio Simonetti, Fabio Pignatelli, Agostino Marangolo, Massimo Morante) Scenogr...