The Minkowski distance of order (where is an integer) between two points
is defined as:
For the Minkowski distance is a metric as a result of the Minkowski inequality.[1] When the distance between and is but the point is at a distance from both of these points. Since this violates the triangle inequality, for it is not a metric. However, a metric can be obtained for these values by simply removing the exponent of The resulting metric is also an F-norm.
Similarly, for reaching negative infinity, we have:
The Minkowski distance can also be viewed as a multiple of the power mean of the component-wise differences between and
The following figure shows unit circles (the level set of the distance function where all points are at the unit distance from the center) with various values of :
Applications
The Minkowski metric is very useful in the field of machine learning and AI. Many popular machine learning algorithms use specific distance metrics such as the aforementioned to compare the similarity of two data points. Depending on the nature of the data being analyzed, various metrics can be used. The Minkowski metric is most useful for numerical datasets where you want to determine the similarity of size between multiple datapoint vectors.
See also
Generalized mean – N-th root of the arithmetic mean of the given numbers raised to the power n
space – Function spaces generalizing finite-dimensional p norm spaces
^Zezula, Pavel; Amato, Giuseppe; Dohnal, Vlastislav; Batko, Michal (2006), "Chapter 1, Foundations of Metric Space Searching, Section 3.1, Minkowski Distances", Similarity Search: The Metric Space Approach, Advances in Database Systems, Springer, p. 10, doi:10.1007/0-387-29151-2, ISBN9780387291512