In mathematics , Clarkson's inequalities , named after James A. Clarkson , are results in the theory of L p spaces . They give bounds for the L p -norms of the sum and difference of two measurable functions in L p in terms of the L p -norms of those functions individually.
Statement of the inequalities
Let (X , Σ, μ ) be a measure space ; let f , g : X → R be measurable functions in L p . Then, for 2 ≤ p < +∞,
‖
f
+
g
2
‖
L
p
p
+
‖
f
− − -->
g
2
‖
L
p
p
≤ ≤ -->
1
2
(
‖ ‖ -->
f
‖ ‖ -->
L
p
p
+
‖ ‖ -->
g
‖ ‖ -->
L
p
p
)
.
{\displaystyle \left\|{\frac {f+g}{2}}\right\|_{L^{p}}^{p}+\left\|{\frac {f-g}{2}}\right\|_{L^{p}}^{p}\leq {\frac {1}{2}}\left(\|f\|_{L^{p}}^{p}+\|g\|_{L^{p}}^{p}\right).}
For 1 < p < 2,
‖
f
+
g
2
‖
L
p
q
+
‖
f
− − -->
g
2
‖
L
p
q
≤ ≤ -->
(
1
2
‖ ‖ -->
f
‖ ‖ -->
L
p
p
+
1
2
‖ ‖ -->
g
‖ ‖ -->
L
p
p
)
q
p
,
{\displaystyle \left\|{\frac {f+g}{2}}\right\|_{L^{p}}^{q}+\left\|{\frac {f-g}{2}}\right\|_{L^{p}}^{q}\leq \left({\frac {1}{2}}\|f\|_{L^{p}}^{p}+{\frac {1}{2}}\|g\|_{L^{p}}^{p}\right)^{\frac {q}{p}},}
where
1
p
+
1
q
=
1
,
{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1,}
i.e., q = p ⁄ (p − 1).
References
Clarkson, James A. (1936), "Uniformly convex spaces", Transactions of the American Mathematical Society , 40 (3): 396–414, doi :10.2307/1989630 , JSTOR 1989630 , MR 1501880 .
Hanner, Olof (1956), "On the uniform convexity of L p and ℓ p ", Arkiv för Matematik , 3 (3): 239–244, Bibcode :1956ArM.....3..239H , doi :10.1007/BF02589410 , MR 0077087 .
Friedrichs, K. O. (1970), "On Clarkson's inequalities", Communications on Pure and Applied Mathematics , 23 (4): 603–607, doi :10.1002/cpa.3160230405 , MR 0264372 .
External links
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics