Unit sphere

Some 1-spheres: x2 is the norm for Euclidean space.

In mathematics, a unit sphere is a sphere of unit radius: the set of points at Euclidean distance 1 from some center point in three-dimensional space. More generally, the unit -sphere is an -sphere of unit radius in -dimensional Euclidean space; the unit circle is a special case, the unit -sphere in the plane. An (open) unit ball is the region inside of a unit sphere, the set of points of distance less than 1 from the center.

A sphere or ball with unit radius and center at the origin of the space is called the unit sphere or the unit ball. Any arbitrary sphere can be transformed to the unit sphere by a combination of translation and scaling, so the study of spheres in general can often be reduced to the study of the unit sphere.

The unit sphere is often used as a model for spherical geometry because it has constant sectional curvature of 1, which simplifies calculations. In trigonometry, circular arc length on the unit circle is called radians and used for measuring angular distance; in spherical trigonometry surface area on the unit sphere is called steradians and used for measuring solid angle.

In more general contexts, a unit sphere is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance", and an (open) unit ball is the region inside.

Unit spheres and balls in Euclidean space

In Euclidean space of dimensions, the -dimensional unit sphere is the set of all points which satisfy the equation

The open unit -ball is the set of all points satisfying the inequality

and closed unit -ball is the set of all points satisfying the inequality

Volume and area

Graphs of volumes (V) and surface areas (S) of unit n-balls

The classical equation of a unit sphere is that of the ellipsoid with a radius of 1 and no alterations to the -, -, or - axes:

The volume of the unit ball in Euclidean -space, and the surface area of the unit sphere, appear in many important formulas of analysis. The volume of the unit -ball, which we denote can be expressed by making use of the gamma function. It is

where is the double factorial.

The hypervolume of the -dimensional unit sphere (i.e., the "area" of the boundary of the -dimensional unit ball), which we denote can be expressed as

For example, is the "area" of the boundary of the unit ball , which simply counts the two points. Then is the "area" of the boundary of the unit disc, which is the circumference of the unit circle. is the area of the boundary of the unit ball , which is the surface area of the unit sphere .

The surface areas and the volumes for some values of are as follows:

(surface area) (volume)
0 1
1 2 2
2 6.283 3.141
3 12.57 4.189
4 19.74 4.935
5 26.32 5.264
6 31.01 5.168
7 33.07 4.725
8 32.47 4.059
9 29.69 3.299
10 25.50 2.550

where the decimal expanded values for are rounded to the displayed precision.

Recursion

The values satisfy the recursion:

for .

The values satisfy the recursion:

for .

Non-negative real-valued dimensions

The value at non-negative real values of is sometimes used for normalization of Hausdorff measure.[1][2]

Other radii

The surface area of an -sphere with radius is and the volume of an - ball with radius is For instance, the area is for the two-dimensional surface of the three-dimensional ball of radius The volume is for the three-dimensional ball of radius .

Unit balls in normed vector spaces

The open unit ball of a normed vector space with the norm is given by

It is the topological interior of the closed unit ball of

The latter is the disjoint union of the former and their common border, the unit sphere of

The "shape" of the unit ball is entirely dependent on the chosen norm; it may well have "corners", and for example may look like in the case of the max-norm in . One obtains a naturally round ball as the unit ball pertaining to the usual Hilbert space norm, based in the finite-dimensional case on the Euclidean distance; its boundary is what is usually meant by the unit sphere.

Let Define the usual -norm for as:

Then is the usual Hilbert space norm. is called the Hamming norm, or -norm. The condition is necessary in the definition of the norm, as the unit ball in any normed space must be convex as a consequence of the triangle inequality. Let denote the max-norm or -norm of .

Note that for the one-dimensional circumferences of the two-dimensional unit balls, we have:

is the minimum value.
is the maximum value.

Generalizations

Metric spaces

All three of the above definitions can be straightforwardly generalized to a metric space, with respect to a chosen origin. However, topological considerations (interior, closure, border) need not apply in the same way (e.g., in ultrametric spaces, all of the three are simultaneously open and closed sets), and the unit sphere may even be empty in some metric spaces.

Quadratic forms

If is a linear space with a real quadratic form then may be called the unit sphere[3][4] or unit quasi-sphere of For example, the quadratic form , when set equal to one, produces the unit hyperbola, which plays the role of the "unit circle" in the plane of split-complex numbers. Similarly, the quadratic form yields a pair of lines for the unit sphere in the dual number plane.

See also

Notes and references

  1. ^ The Chinese University of Hong Kong, Math 5011, Chapter 3, Lebesgue and Hausdorff Measures
  2. ^ Manin, Yuri I. (2006). "The notion of dimension in geometry and algebra" (PDF). Bulletin of the American Mathematical Society. 43 (2): 139–161. doi:10.1090/S0273-0979-06-01081-0. Retrieved 17 December 2021.
  3. ^ Takashi Ono (1994) Variations on a Theme of Euler: quadratic forms, elliptic curves, and Hopf maps, chapter 5: Quadratic spherical maps, page 165, Plenum Press, ISBN 0-306-44789-4
  4. ^ F. Reese Harvey (1990) Spinors and calibrations, "Generalized Spheres", page 42, Academic Press, ISBN 0-12-329650-1

Read other articles:

Shadow of the Thin ManPoster rilis teatrikalSutradaraW. S. Van DykeProduserHunt StrombergDitulis olehDashiell Hammett (para karakter)Skenario Harry Kurnitz Irving Brecher CeritaHarry KurnitzPemeran William Powell Myrna Loy Penata musikDavid SnellSinematograferWilliam H. DanielsPenyuntingRobert J. KernPerusahaanproduksiMetro-Goldwyn-MayerDistributorMetro-Goldwyn-MayerTanggal rilis 21 November 1941 (1941-11-21) (US) Durasi97 menitNegaraAmerika SerikatBahasaInggrisAnggaran$821.000...

 

Berikut adalah daftar negara berdaulat dengan bahasa Melayu berstatus sebagai bahasa resmi. Linguasfer Melayu.   Indonesia   Malaysia   Singapura dan Brunei, di mana bahasa Melayu Baku adalah bahasa resmi   Timor Leste, di mana bahasa Indonesia adalah bahasa kerja   Thailand Selatan dan Kep. Cocos, di mana varietas Melayu lainnya dituturkan Negara berdaulat Negara di mana bahasa Melayu merupakan bahasa resmi de jure Negara Wilayah Populasi1 Ba...

 

New York City Subway station in Brooklyn New York City Subway station in Brooklyn, New York High Street ​ New York City Subway station (rapid transit)Station curvatureStation statisticsAddressHigh Street & Cadman Plaza EastBrooklyn, NY 11201BoroughBrooklynLocaleBrooklyn Heights, DUMBO, Downtown BrooklynCoordinates40°41′56″N 73°59′23″W / 40.69889°N 73.98972°W / 40.69889; -73.98972DivisionB (IND)[1]Line   IND Eighth...

American politician & author (born 1960) This article is about the author and politician. For other people with the same name, see Chris Stewart. Chris StewartMember of the U.S. House of Representativesfrom Utah's 2nd districtIn officeJanuary 3, 2013 – September 15, 2023Preceded byJim MathesonSucceeded byCeleste Maloy Personal detailsBornChristopher Douglas Stewart (1960-07-15) July 15, 1960 (age 63)Logan, Utah, U.S.Political partyRepublicanSpouseEvie StewartRe...

 

Цилиндрический съемный ферритовый фильтр Съемный ферритовый фильтр в форме параллелепипеда Ферритовый фильтр в виде цилиндра без пластмассового покрытия. Характеристика кривой импеданса. Z {\displaystyle {\text{Z}}} — полное сопротивление; X L {\displaystyle {\text{X}}_{\text{L}}} — реактивная со�...

 

Pathological, often painful, involuntary muscle contraction For other uses, see Cramp (disambiguation). Not to be confused with Seizure or Spasm. Medical conditionCrampSymptomssudden muscle pain and a paralysis-like immobilityTreatmentquinine, stretching, massage, and drinking liquids A cramp is a sudden, involuntary, painful skeletal muscle contraction[1][2] or overshortening associated with electrical activity;[3] while generally temporary and non-damaging, they can ...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

Ця стаття є сирим перекладом з іншої мови. Можливо, вона створена за допомогою машинного перекладу або перекладачем, який недостатньо володіє обома мовами. Будь ласка, допоможіть поліпшити переклад. (березень 2012) Рейтинг свободи преси Хоча свобода преси в Україні ніко�...

 

Antimon triselenida Nama Nama lain antimonselit selenoksiantimon Penanda Nomor CAS 1315-05-5 Y Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} ChemSpider 11483776 Y Nomor EC PubChem CID 6391662 Nomor RTECS {{{value}}} CompTox Dashboard (EPA) DTXSID30895002 InChI InChI=1S/2Sb.3Se/q2*+3;3*-2 YKey: WWUNXXBCFXOXHC-UHFFFAOYSA-N YInChI=1S/2Sb.3Se/q2*+3;3*-2Key: WWUNXXBCFXOXHC-UHFFFAOYSA-N SMILES [SbH3+3].[SbH3+3].[Se-2].[Se-2].[Se-2] Sifat Rumus kimia Sb2Se3 ...

 

Mexican football club Football clubVeracruz SportingFull nameVeracruz Sporting ClubNickname(s)Sporting, VeracruzFounded1908GroundEstadio de la Universidad UVM Villa RicaManager Arturo AvilésLeagueTercera División de México Home colours Away colours Veracruz Sporting Club is a Mexican football team from Veracruz, Veracruz State, playing in the Tercera División de México. They were one of Liga MX's inaugural members. History The club was founded in 1908 by the native Spaniards living in Ve...

У этого термина существуют и другие значения, см. Ярус. Крючки собранного яруса, используемого для лова рыбы Я́рус — крючковое орудие лова — особая разновидность гигантского перемёта, используемая в рыболовстве при океаническом или прибрежном морском лове разреж�...

 

مستر أولمبيا 1991 معلومات عامة فترة الانعقاد 13 - 15 سبتمبر 1991 مكان الانعقاد أورلاندو، فلوريدا،  الولايات المتحدة المنظم الاتحاد الدولي لكمال الأجسام واللياقة البدنية (IFBB) المنطقة  العالم ترتيب النسخة 27 الموقع الرسمي الموقع الرسمي لمحترفي اتحاد IFBB قائمة الفائزين صاحب ال...

 

Process of virus reproduction Not to be confused with Lytic cycle. Lysogenic cycle, compared to lytic cycle Lysogenic Cycle:1. The prokaryotic cell is shown with its DNA, in green. 2. The bacteriophage attaches and releases its DNA, shown in red, into the prokaryotic cell. 3. The phage DNA then moves through the cell to the host's DNA. 4. The phage DNA integrates itself into the host cell's DNA, creating prophage. 5. The prophage then remains dormant until the host cell divides. 6. After the ...

Albertville 1992 XVI Juegos Olímpicos de InviernoLocalización Albertville FranciaParticipantes • Países • Deportistas 64 países1801 atletasEventos 57 en 7 deportesCeremoniasApertura 8 de febrero de 1992Clausura 23 de febrero de 1992Inaugurado por François MitterrandJuramentos  • Deportista • Juez Surya BonalyPierre BornatLlama olímpica Michel PlatiniFrançois-Cyrille GrangeEstadio olímpico Théâtre des CérémoniesCronología C...

 

Naval warfare conducted by submarines You can help expand this article with text translated from the corresponding article in German. (September 2023) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not trans...

 

هذه المقالة بحاجة لمراجعة خبير مختص في مجالها. يرجى من المختصين في مجالها مراجعتها وتطويرها. (أغسطس 2014) جماعات دغمش المسلحة هي مليشيات عائلية مسلحة فلسطينية في قطاع غزة، مرتبطة ببعض من قيادة حركة فتح على رأسهم محمد دحلان، ذات إمكانات تسلحية وتدريبية عالية باعتمادها على أفر...

Youth wings of political parties in Albania For other uses, see Bashkimi (disambiguation). This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (March 2023) (Learn how and when to remove this message) Labour Youth Union of AlbaniaAlbanian: Bashkimi i Rinisë së Punës së ShqipërisëFoundedNovember 23, 1941Dissolved1991Headquart...

 

Sustained, long-term downturn in economic activity in one or more economies The examples and perspective in this article deal primarily with the English-speaking world and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (October 2012) (Learn how and when to remove this message) An economic depression is a period of carried long-term economic downturn that is the result of lowered econo...