Injective metric space

In metric geometry, an injective metric space, or equivalently a hyperconvex metric space, is a metric space with certain properties generalizing those of the real line and of L distances in higher-dimensional vector spaces. These properties can be defined in two seemingly different ways: hyperconvexity involves the intersection properties of closed balls in the space, while injectivity involves the isometric embeddings of the space into larger spaces. However it is a theorem of Aronszajn & Panitchpakdi (1956) that these two different types of definitions are equivalent.[1]

Hyperconvexity

A metric space is said to be hyperconvex if it is convex and its closed balls have the binary Helly property. That is:

  1. Any two points and can be connected by the isometric image of a line segment of length equal to the distance between the points (i.e. is a path space).
  2. If is any family of closed balls such that each pair of balls in meets, then there exists a point common to all the balls in .

Equivalently, a metric space is hyperconvex if, for any set of points in and radii satisfying for each and , there is a point in that is within distance of each (that is, for all ).

Injectivity

A retraction of a metric space is a function mapping to a subspace of itself, such that

  1. for all we have that ; that is, is the identity function on its image (i.e. it is idempotent), and
  2. for all we have that ; that is, is nonexpansive.

A retract of a space is a subspace of that is an image of a retraction. A metric space is said to be injective if, whenever is isometric to a subspace of a space , that subspace is a retract of .

Examples

Examples of hyperconvex metric spaces include

Due to the equivalence between hyperconvexity and injectivity, these spaces are all also injective.

Properties

In an injective space, the radius of the minimum ball that contains any set is equal to half the diameter of . This follows since the balls of radius half the diameter, centered at the points of , intersect pairwise and therefore by hyperconvexity have a common intersection; a ball of radius half the diameter centered at a point of this common intersection contains all of . Thus, injective spaces satisfy a particularly strong form of Jung's theorem.

Every injective space is a complete space,[2] and every metric map (or, equivalently, nonexpansive mapping, or short map) on a bounded injective space has a fixed point.[3] A metric space is injective if and only if it is an injective object in the category of metric spaces and metric maps.[4]

Notes

  1. ^ See e.g. Chepoi 1997.
  2. ^ Aronszajn & Panitchpakdi 1956.
  3. ^ Sine 1979; Soardi 1979.
  4. ^ For additional properties of injective spaces see Espínola & Khamsi 2001.

References

  • Aronszajn, N.; Panitchpakdi, P. (1956). "Extensions of uniformly continuous transformations and hyperconvex metric spaces". Pacific Journal of Mathematics. 6: 405–439. doi:10.2140/pjm.1956.6.405. MR 0084762. Correction (1957), Pacific J. Math. 7: 1729, MR0092146.
  • Chepoi, Victor (1997). "A TX approach to some results on cuts and metrics". Advances in Applied Mathematics. 19 (4): 453–470. doi:10.1006/aama.1997.0549. MR 1479014.
  • Espínola, R.; Khamsi, M. A. (2001). "Introduction to hyperconvex spaces" (PDF). In Kirk, W. A.; Sims B. (eds.). Handbook of Metric Fixed Point Theory. Dordrecht: Kluwer Academic Publishers. MR 1904284.
  • Isbell, J. R. (1964). "Six theorems about injective metric spaces". Commentarii Mathematici Helvetici. 39: 65–76. doi:10.1007/BF02566944. MR 0182949.
  • Sine, R. C. (1979). "On nonlinear contraction semigroups in sup norm spaces". Nonlinear Analysis. 3 (6): 885–890. doi:10.1016/0362-546X(79)90055-5. MR 0548959.
  • Soardi, P. (1979). "Existence of fixed points of nonexpansive mappings in certain Banach lattices". Proceedings of the American Mathematical Society. 73 (1): 25–29. doi:10.2307/2042874. JSTOR 2042874. MR 0512051.

Read other articles:

Serval[1] Status konservasi Risiko Rendah (IUCN 3.1)[2] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Mammalia Ordo: Carnivora Famili: Felidae Subfamili: Felinae Genus: LeptailurusSevertzov, 1858 Spesies: L. serval Nama binomial Leptailurus serval(Schreber, 1776) Penyebaran serval Serval (Leptailurus serval), juga dikenal sebagai Tierboskat, adalah kucing liar yang ada di Afrika. Studi DNA telah menunjukkan bahwa serval berkaitan erat dengan kucing em...

 

Kapal pesiar MS Freedom of the Seas di Pelabuhan Hamburg Kapal pesiar berlabuh di mauritius Kapal pesiar (bahasa Inggris: cruise ship atau cruise liner) adalah kapal yang dipakai secara khusus untuk tujuan rekreasi. Para Penumpang menaiki kapal pesiar untuk menikmati waktu yang dihabiskan di atas kapal yang dilengkapi fasilitas penginapan dan perlengkapan bagaikan hotel berbintang. Sebagian kapal pesiar memiliki rute pelayaran yang selalu kembali ke pelabuhan asal keberangkatan. Lama pelayara...

 

Leang PellengeGua PellengeLua error in Modul:Location_map at line 425: Kesalahan format nilai koordinat.LokasiLingkungan Panaikang, Kelurahan Leang-Leang, Kecamatan Bantimurung, Kabupaten Maros, Sulawesi Selatan, IndonesiaKoordinat4°58'15.0S 119°41'10.3E[1]Rentang tinggi60 mdplGeologikarst / batu kapur / batu gampingSitus webvisit.maroskab.go.idcagarbudaya.kemdikbud.go.idkebudayaan.kemdikbud.go.id/bpcbsulsel/ Wisata Gua PrasejarahLeang Pellenge Informasi Lokasi Lingkungan Panaikang,...

Diagram kelenjar pineal Kelenjar pineal (juga disebut badan pineal, epiphysis cerebri, epiphysis, conarium atau Mata ketiga) adalah sebuah kelenjar endokrin pada otak vertebrata. Ia memproduksi serotonin turunan dari melatonin, sebuah hormon yang mempengaruhi modulasi pola bangun/tidur dan fungsi musiman. Bentuknya mirip dengan sebuah buah pohon cemara mungil (namanya karenanya), dan dia terletak dekat dengan pusat otak, di antara dua belahan, terselip di sebuah alur di mana dua badan thalamu...

 

Pemilihan umum legislatif Indonesia 1999199720047 Juni 1999 (1999-06-07)462 kursi Dewan Perwakilan RakyatKandidat   Partai pertama Partai kedua Partai ketiga   Partai PDI-P Golkar PPP Pemilu sebelumnya Partai baru 325 kursi, 74,51% 89 kursi, 22,43% Kursi yang dimenangkan 153 120 58 Perubahan kursi Partai baru 205 31 Suara rakyat 35.689.073 23.741.749 11.329.905 Persentase 33,74% 22,44% 10,71% Swing Partai baru 52,07% 9,88%   Partai keempat Partai ...

 

Lucás PapademosΛουκάς Παπαδήμος Perdana Menteri YunaniMasa jabatan11 November 2011 – 17 Mei 2012PresidenKarolos PapouliasWakilTheodoros PangalosEvangelos Venizelos PendahuluGeorge PapandreouPenggantiPanagiotis PikrammenosWakil Presiden Bank Sentral EropaMasa jabatan31 Mei 2002 – 31 Desember 2010PresidenWim DuisenbergJean-Claude Trichet PendahuluChristian NoyerPenggantiVítor ConstâncioGubernur Bank YunaniMasa jabatan26 Oktober 1994 – 31 Mei 20...

Yeongsanjae adalah upacara ritual agama Buddha yang dilaksanakan di Kuil Bongwon, Seoul, Korea Selatan.[1] Upacara dalam kepercayaan Buddhisme ini dimaksudkan untuk memberi persembahan kepada Buddha agar ia menuntun manusia, baik yang hidup dan yang sudah tiada menuju kedamaian dan pencerahan.[2] Upacara ini diadakan dengan ritual bompae yakni melantunkan sutra Buddha, dilanjutkan dengan menarikan tarian ritual Nabichum, Barachum, Beobgochum dan Tajuchum.[3] Upacara in...

 

South African firearms manufacturer Truvelo Armoury is a South African firearms manufacturer. It is a division of Truvelo Specialised Manufacturing (Pty) Ltd. Based in Midrand (Johannesburg) the company produces a range of rifles and other small arms for military, law enforcement and civilian users.[1][2] It is unsure as to the current operational standing, operational capabilities and staffing capacity of Truvelo. This is due to the numerous amount of unfulfilled orders/contr...

 

M'Bala Nzola Nzola nel 2017 Nazionalità  Angola Altezza 185 cm Peso 83 kg Calcio Ruolo Attaccante Squadra  Fiorentina Carriera Giovanili 2010-2014 Troyes2014-2015 Académica Squadre di club1 2015 Académica0 (0)2015-2016 Sertanense25 (7)2016-2017 Virtus Francavilla35 (11)2017-2018 Carpi14 (0)2018-2020 Trapani50 (9)2020-2023 Spezia94 (32)[1]2023- Fiorentina29 (2) Nazionale 2021- Angola6 (2) 1 I due numeri indicano le presenze e l...

Bagian dari seri tentangIslam Sunni Rukun iman Tauhid Malaikat Nabi dan Rasul Kitab Hari Akhir Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Khulafaur Rasyidin Abu Bakar Umar bin Khattab Utsman bin 'Affan Ali bin Abi Thalib Mazhab fikih Hanafiyah Malikiyah Syafi'iyah Hanabilah Lainnya Zhahiri Auza'i Tsauri Laitsi Jariri Mazhab akidah Ahli Hadis Atsariyah Ahlur Ra’yi Asy'ariyah Maturidiyah Dalam konteks Ihsan Wajd dan Kasyf (Sufi) Gerakan Barelwi Deobandi Modernisme Islam Modern...

 

Leafy vegetable dish from Indian subcontinent For the footballer, see Kaimar Saag. For the medical term, see Serum-ascites albumin gradient. SaagSarson ka saag with makki ki rotiAlternative namesSaaga or tuna (Odisha), shaag, shaak, saagwalaRegion or statePunjabMain ingredientsVarious kinds of edible plants  Media: Saag Saag (Hindustani: [ˈsɑːg]), also spelled sag or saga, is an Indian subcontinental leafy vegetable dish eaten with bread such as roti or naan,[1] ...

 

Association football club in Wales Football clubGresford AthleticFull nameGresford Athletic Football ClubNickname(s)The ColliersThe AtticsFounded1946; 78 years ago (1946)GroundThe Rock,Rhosymedre, WrexhamCapacity3,000 (500 seated)ChairmanJulian DaviesManagerEddie Maurice-JonesLeagueCymru North2022–23Cymru North, 10th of 16WebsiteClub website Home colours Away colours Gresford Athletic Football Club is a football team based in Gresford, near Wrexham, Wales. They are members...

Voce principale: Unione Sportiva Sanremese Calcio 1904. Unione Sportiva SanremeseStagione 1961-1962Sport calcio Squadra Sanremese Allenatore Mario Ventimiglia Presidente Cornelio Crosta Serie C8º posto nel girone A. Maggiori presenzeCampionato: Gelio, Tortorese (32) Miglior marcatoreCampionato: Onesti (8) 1960-1961 1962-1963 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Unione Sportiva Sanremese nelle competizioni ufficiali della stagione 19...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Tisch für russisches Billard. Ein Objektball vor der Ecktasche. Ein Objektball vor der Seitentasche. Größenvergleich verschiedener Billardkugeln Russisches Billard: ganz links Russisches Billard (auch Russische Pyramide oder nur Pyramide genannt) ist eine Billard-Variante, die in Russland und den übrigen GUS-Staaten populärer als jede andere Billardvariante, außerhalb jedoch wenig bekannt ist. Inhaltsverzeichnis 1 Geschichte 2 Regeln 3 Disziplinen 3.1 Freie Pyramide 3.2 Dynamische Pyram...

Voce principale: Giro d'Italia 1983. Il vincitore dell'edizione, Giuseppe Saronni, nella cronometro finale Gorizia-Udine del 5 giugno 1983. Elenco dei partecipanti al Giro d'Italia 1983. Il Giro d'Italia 1983 fu la sessantaseiesima edizione della corsa. Alla competizione presero parte 18 squadre, ciascuna delle quali composta da nove corridori, per un totale di 162 ciclisti. La corsa partì il 17 maggio da Brescia e terminò il 10 giugno a Udine; in quest'ultima località portarono a termine...

 

The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (December 2010) (Learn how and when to remove this message) World Conservation AwardWorld Conservation Award emblemOwnerWorld Organization of the Scout Movement  Scouting portal Boy Scouts of America Cub Scout World Conservation AwardBoy Scout Worl...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) هذه القائمة غير مكتملة. فضلاً ساهم في تطويرها بإضافة مزيد من المعلومات ولا تنسَ الاستشهاد بمصادر موثوق بها....

Pattern of references in science journals Visual Representation of Bradford's law. Bradford's law is a pattern first described by Samuel C. Bradford in 1934 that estimates the exponentially diminishing returns of searching for references in science journals. One formulation is that if journals in a field are sorted by number of articles into three groups, each with about one-third of all articles, then the number of journals in each group will be proportional to 1:n:n2.[1] There are a...

 

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (يناير 2024) مردانشاه معلومات شخصية الوفاة سنة 642   نهاوند  سبب الوفاة قتل في معركة&#...