Injective object

In mathematics, especially in the field of category theory, the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of model categories. The dual notion is that of a projective object.

Definition

An object Q is injective if, given a monomorphism f : XY, any g : XQ can be extended to Y.

An object in a category is said to be injective if for every monomorphism and every morphism there exists a morphism extending to , i.e. such that .[1]

That is, every morphism factors through every monomorphism .

The morphism in the above definition is not required to be uniquely determined by and .

In a locally small category, it is equivalent to require that the hom functor carries monomorphisms in to surjective set maps.

In Abelian categories

The notion of injectivity was first formulated for abelian categories, and this is still one of its primary areas of application. When is an abelian category, an object Q of is injective if and only if its hom functor HomC(–,Q) is exact.

If is an exact sequence in such that Q is injective, then the sequence splits.

Enough injectives and injective hulls

The category is said to have enough injectives if for every object X of , there exists a monomorphism from X to an injective object.

A monomorphism g in is called an essential monomorphism if for any morphism f, the composite fg is a monomorphism only if f is a monomorphism.

If g is an essential monomorphism with domain X and an injective codomain G, then G is called an injective hull of X. The injective hull is then uniquely determined by X up to a non-canonical isomorphism.[1]

Examples

Uses

If an abelian category has enough injectives, we can form injective resolutions, i.e. for a given object X we can form a long exact sequence

and one can then define the derived functors of a given functor F by applying F to this sequence and computing the homology of the resulting (not necessarily exact) sequence. This approach is used to define Ext, and Tor functors and also the various cohomology theories in group theory, algebraic topology and algebraic geometry. The categories being used are typically functor categories or categories of sheaves of OX modules over some ringed space (X, OX) or, more generally, any Grothendieck category.

Generalization

An object Q is H-injective if, given h : AB in H, any f : AQ factors through h.

Let be a category and let be a class of morphisms of .

An object of is said to be -injective if for every morphism and every morphism in there exists a morphism with .

If is the class of monomorphisms, we are back to the injective objects that were treated above.

The category is said to have enough -injectives if for every object X of , there exists an -morphism from X to an -injective object.

A -morphism g in is called -essential if for any morphism f, the composite fg is in only if f is in .

If g is a -essential morphism with domain X and an -injective codomain G, then G is called an -injective hull of X.[1]

Examples of H-injective objects

See also

Notes

  1. ^ a b c Adamek, Jiri; Herrlich, Horst; Strecker, George (1990). "Sec. 9. Injective objects and essential embeddings". Abstract and Concrete Categories: The Joy of Cats (PDF). Reprints in Theory and Applications of Categories, No. 17 (2006) pp. 1-507. orig. John Wiley. pp. 147–155.

References

Read other articles:

Coordinate: 45°11′11.41″N 9°09′20.65″E / 45.186503°N 9.155735°E45.186503; 9.155735 Università degli Studi di Pavia Aula Magna dell'Università di Pavia, sede delle principali cerimonie dell'Ateneo UbicazioneStato Italia Città Pavia Altre sediCremona, Voghera, Vigevano Dati generaliNome latinoAlma Ticinensis Universitas[1][2] SoprannomeUniPV MottoPAR INGENIO VIRTUS, «la virtù sia pari all’ingegno» Fondazione1361 (662 anni) Tipostatal...

 

SumitraSumitra melahirkan anak kembarnya. (Lantai atas ke kiri)PustakaRamayanaInformasi pribadiDasharathaAnakLakshmana dan ShatrughnaDinastiKashi (sejak lahir)Raghuvamsha (setelah pernikahan)Untuk the Indian actress, lihat Sumithra (actress). Sumitra (bahasa Sanskerta: सुमित्रा, Sumitrā) adalah putri Kashi dalam mitologi Hindu. Ia adalah seorang tokoh dalam wiracarita Ramayana. Sumitra yang bijaksana adalah permaisuri ketiga dari prabu Dasarata dan merupakan ibu dari Laksaman...

 

Teter Lyctus TaksonomiKerajaanAnimaliaFilumArthropodaKelasInsectaOrdoColeopteraFamiliBostrichidaeGenusLyctus Fabricius, 1792 Tata namaSinonim taksonXylotrogus (en) lbs Lyctus atau teter adalah genus kumbang bubuk dalam keluarga Bostrichidae, terdapat di semua benua kecuali Antartika . Jenis Lyctus africanus Lyctus americanus Lyctus argentinensis Lyctus asiaticus Lyctus brunneus Lyctus carbonarius Lyctus caribeanus Lyctus cavicollis Lyctus chacoensis Lyctus chilensis Lyctus cinereus Lyctus des...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Eder Silva FerreiraInformasi pribadiTanggal lahir 7 April 1983 (umur 40)Tempat lahir BrasilPosisi bermain GelandangKarier senior*Tahun Tim Tampil (Gol)2014 Shonan Bellmare * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Eder...

 

Guru-Guru GokilPoster filmSutradaraSammaria SimanjuntakProduser Dian Sastrowardoyo Shanty Harmayn Aoura Lovenson Chandra Tanya Yuson SkenarioRahabi MandraCeritaTanya YusonPemeran Gading Marten Boris Bokir Kevin Ardilova Ibnu Jamil Shakira Jasmine Faradina Mufti Nikandro Mailangkay Dian Sastrowardoyo Penata musik Aghi Narottama Bemby Gusti Tony Merle SinematograferMuhammad FirdausPenyuntingDinda AmandaPerusahaanproduksiBASE EntertainmentDistributorNetflixTanggal rilis 17 Agustus 2020...

 

AuxerreYonne riverAuxerre Lokasi di Region Bourgogne-Franche-Comté Auxerre Koordinat: 47°47′55″N 3°34′02″E / 47.7986°N 3.5672°E / 47.7986; 3.5672NegaraPrancisRegionBourgogne-Franche-ComtéDepartemenYonneArondisemenAuxerreAntarkomuneAuxerroisPemerintahan • Wali kota (2008–2014) Guy FerezLuas • Land149,95 km2 (1,929 sq mi) • Populasi244.620 • Kepadatan Populasi28,9/km2 (23/sq mi)Kode INSEE...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الدوري النمساوي 1955–56 تفاصيل الموسم الدوري النمساوي  النسخة 45  البلد النمسا  التاريخ بداية:27 أغسط...

 

Former Kerry Gaelic footballer and Fine Gael politician (b. 1952) Jimmy DeenihanDeenihan in 2013Minister of State2014–2016Foreign Affairs and Trade2014–2016Taoiseach1994–1997Agriculture, Food and ForestryMinister for Arts, Heritage and the GaeltachtIn office9 March 2011 – 11 July 2014TaoiseachEnda KennyPreceded byMary HanafinSucceeded byHeather HumphreysTeachta DálaIn officeFebruary 2011 – February 2016ConstituencyKerry North–West LimerickIn officeFebruary 1987&...

 

Questa voce sull'argomento singoli pop è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Instabilesingolo discograficoScreenshot del video musicale del branoArtistaVirginio Pubblicazione29 maggio 2006 Durata3:20 Album di provenienzaVirginio Tracce1 GenerePop EtichettaUniversal Music ProduttoreIvo Grasso , Fabrizio Grenghi Registrazione2006 Virginio - cronologiaSingolo precedenteDavvero(2006)Singolo succe...

President of Planned Parenthood (2008-2018) Cecile RichardsPresident of Planned ParenthoodIn officeFebruary 2006 – April 2018Preceded byGloria FeldtSucceeded byLeana Wen Personal detailsBorn (1957-07-15) July 15, 1957 (age 66)Waco, Texas, U.S.SpouseKirk AdamsChildren3ParentAnn Richards (mother)ResidenceNew York CityEducationBrown University (BA) Cecile Richards (born July 15, 1957)[1] is an American activist who served as the president of the Planned Parenthood Federat...

 

Protected area of British Columbia, Canada Creston Valley Wildlife Management AreaIUCN category IV (habitat/species management area)[1]Nearest cityCreston, British ColumbiaCoordinates49°10′N 116°35′W / 49.167°N 116.583°W / 49.167; -116.583Area69 square kilometres (27 sq mi)Established1968Governing bodyCreston Valley Wildlife Management Areacrestonwildlife.ca Ramsar WetlandOfficial nameCreston ValleyDesignated21 February 1994Reference...

 

Braderochus Braderochus levoiturieri Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Subfamili: Prioninae Genus: Braderochus Braderochus adalah genus kumbang tanduk panjang yang tergolong famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup ...

American lawyer, politician, and judge (1786–1857) Senator Marcy redirects here. For the New Hampshire State Senate member, see Daniel Marcy. William MarcyMarcy c. 185621st United States Secretary of StateIn officeMarch 7, 1853 – March 6, 1857PresidentFranklin PierceJames BuchananPreceded byEdward EverettSucceeded byLewis Cass20th United States Secretary of WarIn officeMarch 6, 1845 – March 4, 1849PresidentJames K. PolkPreceded byWilliam WilkinsSucceeded byGeorge W. Cr...

 

مقطع عرضي لكبل الاتصالات البحري. 1. متعدد الإيثيلين. 2. شريط مايلارن. 3. أسلاك حديد مجدولة. 4. حاجز ألمنيوم للماء. 5. بوليكاربونات. 6. أنبوب نحاسي أو ألمنيوم. 7. هلام بترولي. 8. ألياف بصرية. كبل[1] الاتصالات البحري (جمع: كُبُول)[1] (بالإنجليزية: Submarine communications cable)‏، هو كبل يوضع في ...

 

Port in IndonesiaPort of BakauheniRo-ro ship at Port of BakauheniClick on the map for a fullscreen viewNative namePelabuhan BakauheniLocationCountryIndonesiaLocationBakauheni, South Lampung, Lampung, Indonesia Port of Bakauheni and Siger Tower Bakauheni is a town in the southern part of the province of Lampung, Indonesia, and is the largest and busiest port in the province, and also one of the busiest ports in Indonesia. Ferries carrying passengers and vehicles, particularly large trucks, con...

Voce principale: Campionato mondiale di Formula 1 1961.  Gran Premio di Monaco 1961 95º GP del Mondiale di Formula 1Gara 1 di 8 del Campionato 1961 Data 8 aprile 1961 Nome ufficiale XIX Grand Prix Automobile de Monaco Luogo Circuito di Monte Carlo Percorso 3,145 km / 1,954 US mi Circuito cittadino Distanza 100 giri, 314,500 km/ 195,4 US mi Clima Sereno Risultati Pole position Giro più veloce Stirling Moss Stirling Moss Lotus-Climax in 1:39.1 Lotus-Climax in 1:36.3 (nel giro 85) Podio ...

 

Constituency of the Bihar legislative assembly in India Gaya TownConstituency No. 230 for the Bihar Legislative AssemblyConstituency detailsCountryIndiaRegionEast IndiaStateBiharDistrictGayaLS constituencyGayaEstablished1951Total electors2,70,781ReservationNoneMember of Legislative Assembly17th Bihar Legislative AssemblyIncumbent Prem KumarCabinet Minister, Government of Bihar Party   BJPAllianceNDAElected year2020 Not to be confused with Gaya Lok Sabha constituency. Gaya Town Assem...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: HME, Incorporated – news · newspapers · books · scholar · JSTOR (February 2017) (Learn how and when to remove this message) Morehead Fire Department, KY. 1979 Pierce-Hendrickson custom cab Engine 7 HME Mt. Kisco (NY) Fire/Rescue 15 HME, Incorporated (Hendrickso...

Questa voce o sezione sull'argomento centri abitati della Polonia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Pszczewcomune LocalizzazioneStato Polonia Voivodato Lubusz Distretto Międzyrzecz AmministrazioneSindacoWaldemar Gerard Górczyński TerritorioCoordinate52°28′N 15°46′E52°2...

 

Otemachi One 2021年11月撮影 情報用途 事務所、店舗、多目的ホール、ホテル,、地域冷暖房施設[1]設計者 日建設計・鹿島建設設計共同企業体デザインアーキテクト Skidmore, Owings & Merrill LLP (SOM)[1]施工 鹿島建設[1]事業主体 三井物産、三井不動産構造形式 鉄骨造 一部鉄骨鉄筋コンクリート造、鉄筋コンクリート造敷地面積 20,900 m² [1]建築面積...