In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheafF such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times the restriction of s for any f in O(U) and s in F(U).
The standard case is when X is a scheme and O its structure sheaf. If O is the constant sheaf, then a sheaf of O-modules is the same as a sheaf of abelian groups (i.e., an abelian sheaf).
If X is the prime spectrum of a ring R, then any R-module defines an OX-module (called an associated sheaf) in a natural way. Similarly, if R is a graded ring and X is the Proj of R, then any graded module defines an OX-module in a natural way. O-modules arising in such a fashion are examples of quasi-coherent sheaves, and in fact, on affine or projective schemes, all quasi-coherent sheaves are obtained this way.
Given a ringed space (X, O), if F is an O-submodule of O, then it is called the sheaf of ideals or ideal sheaf of O, since for each open subset U of X, F(U) is an ideal of the ring O(U).
A sheaf of algebras is a sheaf of module that is also a sheaf of rings.
Operations
Let (X, O) be a ringed space. If F and G are O-modules, then their tensor product, denoted by
or ,
is the O-module that is the sheaf associated to the presheaf (To see that sheafification cannot be avoided, compute the global sections of where O(1) is Serre's twisting sheaf on a projective space.)
Similarly, if F and G are O-modules, then
denotes the O-module that is the sheaf .[4] In particular, the O-module
is called the dual module of F and is denoted by . Note: for any O-modules E, F, there is a canonical homomorphism
,
which is an isomorphism if E is a locally free sheaf of finite rank. In particular, if L is locally free of rank one (such L is called an invertible sheaf or a line bundle),[5] then this reads:
implying the isomorphism classes of invertible sheaves form a group. This group is called the Picard group of X and is canonically identified with the first cohomology group (by the standard argument with Čech cohomology).
If E is a locally free sheaf of finite rank, then there is an O-linear map given by the pairing; it is called the trace map of E.
is the sheaf associated to the presheaf . If F is locally free of rank n, then is called the determinant line bundle (though technically invertible sheaf) of F, denoted by det(F). There is a natural perfect pairing:
Let f: (X, O) →(X', O') be a morphism of ringed spaces. If F is an O-module, then the direct image sheaf is an O'-module through the natural map O' →f*O (such a natural map is part of the data of a morphism of ringed spaces.)
If G is an O'-module, then the module inverse image of G is the O-module given as the tensor product of modules:
An injective O-module is flasque (i.e., all restrictions maps F(U) → F(V) are surjective.)[6] Since a flasque sheaf is acyclic in the category of abelian sheaves, this implies that the i-th right derived functor of the global section functor in the category of O-modules coincides with the usual i-th sheaf cohomology in the category of abelian sheaves.[7]
Sheaf associated to a module
Let be a module over a ring . Put and write . For each pair , by the universal property of localization, there is a natural map
having the property that . Then
is a contravariant functor from the category whose objects are the sets D(f) and morphisms the inclusions of sets to the category of abelian groups. One can show[8] it is in fact a B-sheaf (i.e., it satisfies the gluing axiom) and thus defines the sheaf on X called the sheaf associated to M.
The most basic example is the structure sheaf on X; i.e., . Moreover, has the structure of -module and thus one gets the exact functor from ModA, the category of modules over A to the category of modules over . It defines an equivalence from ModA to the category of quasi-coherent sheaves on X, with the inverse , the global section functor. When X is Noetherian, the functor is an equivalence from the category of finitely generated A-modules to the category of coherent sheaves on X.
The construction has the following properties: for any A-modules M, N, and any morphism ,
, since the equivalence between ModA and the category of quasi-coherent sheaves on X.
;[11] in particular, taking a direct sum and ~ commute.
A sequence of A-modules is exact if and only if the induced sequence by is exact. In particular, .
Sheaf associated to a graded module
There is a graded analog of the construction and equivalence in the preceding section. Let R be a graded ring generated by degree-one elements as R0-algebra (R0 means the degree-zero piece) and M a graded R-module. Let X be the Proj of R (so X is a projective scheme if R is Noetherian). Then there is an O-module such that for any homogeneous element f of positive degree of R, there is a natural isomorphism
as sheaves of modules on the affine scheme ;[12] in fact, this defines by gluing.
Example: Let R(1) be the graded R-module given by R(1)n = Rn+1. Then is called Serre's twisting sheaf, which is the dual of the tautological line bundle if R is finitely generated in degree-one.
If F is an O-module on X, then, writing , there is a canonical homomorphism:
which is an isomorphism if and only if F is quasi-coherent.
Computing sheaf cohomology
This section needs expansion. You can help by adding to it. (January 2016)
Sheaf cohomology has a reputation for being difficult to calculate. Because of this, the next general fact is fundamental for any practical computation:
Theorem — Let X be a topological space, F an abelian sheaf on it and an open cover of X such that for any i, p and 's in . Then for any i,
Serre's vanishing theorem[13] states that if X is a projective variety and F a coherent sheaf on it, then, for sufficiently large n, the Serre twistF(n) is generated by finitely many global sections. Moreover,
For each i, Hi(X, F) is finitely generated over R0, and
Let (X, O) be a ringed space, and let F, H be sheaves of O-modules on X. An extension of H by F is a short exact sequence of O-modules
As with group extensions, if we fix F and H, then all equivalence classes of extensions of H by F form an abelian group (cf. Baer sum), which is isomorphic to the Ext group, where the identity element in corresponds to the trivial extension.
In the case where H is O, we have: for any i ≥ 0,
since both the sides are the right derived functors of the same functor
Note: Some authors, notably Hartshorne, drop the subscript O.
Assume X is a projective scheme over a Noetherian ring. Let F, G be coherent sheaves on X and i an integer. Then there exists n0 such that
^This cohomology functor coincides with the right derived functor of the global section functor in the category of abelian sheaves; cf. Hartshorne, Ch. III, Proposition 2.6.
which is an isomorphism if F is of finite presentation (EGA, Ch. 0, 5.2.6.)
^For coherent sheaves, having a tensor inverse is the same as being locally free of rank one; in fact, there is the following fact: if and if F is coherent, then F, G are locally free of rank one. (cf. EGA, Ch 0, 5.4.3.)
Municipality in Catalonia, SpainEl Pont de BarMunicipality Coat of armsEl Pont de BarLocation in CataloniaCoordinates: 42°21′29″N 1°38′20″E / 42.358°N 1.639°E / 42.358; 1.639Country SpainCommunity CataloniaProvince LleidaComarcaAlt UrgellGovernment • MayorFrancisco Jordana Duran (2015)[1]Area[2] • Total42.6 km2 (16.4 sq mi)Population (2018)[3] • Total171 •&...
1988 North Carolina lieutenant gubernatorial election ← 1984 November 8, 1988 1992 → Nominee Jim Gardner Tony Rand Party Republican Democratic Popular vote 1,072,002 1,044,917 Percentage 50.64% 49.36% Lieutenant Governor before election Robert B. Jordan Democratic Elected Lieutenant Governor Jim Gardner Republican Elections in North Carolina Federal government U.S. President 1792 1796 1800 1804 1808 1812 1816 1820 1824 1828 1832 1836 1840 1844 1848 1852 1856...
Chronologies Données clés 320 321 322 323 324325 326 327 328 329Décennies :290 300 310 320 330 340 350Siècles :IIe IIIe IVe Ve VIeMillénaires :-IIe -Ier Ier IIe IIIe Calendriers Romain Chinois Grégorien Julien Hébraïque Hindou Hégirien Persan Républicain modifier Les années 320 couvrent la période de 320 à 329. Événements L'Invention de la Croix, enluminure de Jan van Eyck, Très Belles Heures de Notre-Dame (Turin-Mailänder G...
This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (October 2015) 2015 studio album by Tamar BraxtonCalling All LoversDeluxe edition cover. Standard edition uses the same cover but in a slightly different color and is no longer available for retail.Studio album by Tamar BraxtonReleasedOctober 2, 2015Recorded2014–15StudioOasis Mastering (Burb...
Aizukotetsu-kaiThe daimon of Aizukotetsu-kaiFounded1868; 156 years ago (1868)FounderSenkichi KousakaFounding locationKyoto, JapanMembership50[1]Leader(s)Toshinori Kaneko The Seventh Aizukotetsu-kai (七代目会津小鉄会, Shichidaime Aizukotetsu-kai) (sometimes written Aizu-Kotetsukai or Aizu Kotetsu-kai) is a yakuza organization in Japan based in Kyoto. Its name comes from the Aizu region, Kotetsu, a type of Japanese sword, and the suffix -kai, or society. I...
Para otros usos de este término, véase Batman (desambiguación). Batman Personaje de DC Comics Primera aparición Detective Comics N.º 27 (30 de marzo de 1939)Creado por Bob Kane (concepto)Bill Finger (desarrollador)[1]Interpretado por 13 actoresVersión televisiva:Lewis Wilson[2] (1943)Robert Lowery[3] (1949)Adam West (1966-1968)David Mazouz[4][5] (2014-2019)Iain Glen[6] (2019-2023)Versión cinematográfica:Adam West (1966)Michael Keaton (1989-19...
County in Missouri, United States County in MissouriNewton CountyCountyNewton County Courthouse in NeoshoLocation within the U.S. state of MissouriMissouri's location within the U.S.Coordinates: 36°55′N 94°20′W / 36.91°N 94.33°W / 36.91; -94.33Country United StatesState MissouriFoundedDecember 15, 1838SeatNeoshoLargest cityJoplinArea • Total627 sq mi (1,620 km2) • Land625 sq mi (1,620 km2) •...
SutokuKaisar JepangBerkuasa25 Februari 1123 – 5 Januari 1142PendahuluTobaPenerusKonoeInformasi pribadiKelahiran7 Juli 1119Kematian14 September 1164(1164-09-14) (umur 45)PemakamanShiramine no misasagi (Kagawa)WangsaYamatoAyahKaisar TobaIbuFujiwara no TamakoPasanganFujiwara no KiyokoAnakPangeran Shigehito Kaisar Sutoku (崇徳天皇code: ja is deprecated , Sutoku-tennō, 7 Juli 1119 – 14 September 1164) adalah kaisar Jepang ke-75,[1] menurut urutan suksesi tradisi...
У этого термина существуют и другие значения, см. 37 (значения). Запрос «37» перенаправляется сюда; о числе 37 см. 37 (число). Годы 33 · 34 · 35 · 36 — 37 — 38 · 39 · 40 · 41 Десятилетия 10-е · 20-е — 30-е — 40-е · 50-е Века I век до н. э. — I век — II век 1-е тысячелетие II век до н....
Inagua Distrik dan pulauLokasi di BahamaNegara BahamaKelompok pulauInaguaLuas • Total1.551 km2 (599 sq mi)Populasi • Total913 • Kepadatan0,59/km2 (1,5/sq mi)Kode ISO 3166-2BS-IN Inagua adalah salah satu distrik dan juga pulau di Bahama. Kode ISO 3166-2 daerah ini adalah BS-IN. lbsPemerintah daerah di BahamaDistrik tingkat dua Abaco Selatan Abaco Tengah Abaco Utara Andros Selatan Andros Tengah Andros Utara Cat Island Eleuthera Tengah...
Jaeden MartellMartell tahun 2018LahirJaeden Lieberher04 Januari 2003 (umur 21)Philadelphia, PennsylvaniaPekerjaanAktorTahun aktif2013–sekarang Jaeden Martell (lahir 4 Januari 2003) sebelumnya dikenal sebagai Jaeden Lieberher,[1] adalah seorang aktor asal Amerika Serikat. Dia dikenal karena telah memerankan peran dalam adaptasi film It (2017) dan sekuelnya It Chapter Two (2019) dari novel karya Stephen King, It. Dia juga berperan dalam film misteri tahun 2019 Knives Out da...
2012 romantic comedy film by Joss Whedon Much Ado About NothingTheatrical release posterDirected byJoss WhedonScreenplay byJoss WhedonBased onMuch Ado About Nothing1600 playby William ShakespeareProduced by Joss Whedon Kai Cole Starring Amy Acker Alexis Denisof Reed Diamond Nathan Fillion Clark Gregg Fran Kranz Sean Maher Jillian Morgese CinematographyJay HunterEdited by Daniel Kaminsky Joss Whedon Music byJoss WhedonProductioncompanyBellwether PicturesDistributed by Lionsgate Roadside Attrac...
Type of soft, billed hat A New York Yankees baseball cap A baseball cap is a type of soft hat with a rounded crown and a stiff bill[1] projecting in front.[2] The front of the hat typically displays a design or a logo (historically, usually only a sports team, namely a baseball team, or names of relevant companies, when used as a commercial marketing technique). The hat may be fitted to the wearer's head or the back may have elastic, a plastic prong-in-a-hole (multiple holes w...
Disambiguazione – Se stai cercando altri significati, vedi Pontremoli (disambigua). Pontremolicomune Pontremoli – Veduta LocalizzazioneStato Italia Regione Toscana Provincia Massa-Carrara AmministrazioneSindacoJacopo Maria Ferri (centro-destra) dal 4-10-2021 TerritorioCoordinate44°22′34″N 9°52′47.64″E44°22′34″N, 9°52′47.64″E (Pontremoli) Altitudine236 m s.l.m. Superficie182,48 km² Abitanti6 956[1] (21-9-2023) Den...
واري الأرض والسكان الحكم التأسيس والسيادة التاريخ تاريخ التأسيس 600 وسيط property غير متوفر. تعديل مصدري - تعديل دولة واري في أقصى توسع لها (باللون القرمزي) مع دولة تياواناكو واري (بالإسبانية: Huari) هي حضارة قديمة ازدهرت في فترة الأفق الأوسط في جبال الأنديز في جنوب وسط ...
Questa voce sull'argomento centri abitati del Paraná è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. São Jorge do Ivaícomune LocalizzazioneStato Brasile Stato federato Paraná MesoregioneNorte Central Paranaense MicroregioneFloraí AmministrazioneSindacoAndré Luís Bovo TerritorioCoordinate23°25′58″S 52°17′34″W23°25′58″S, 52°17′34″W (São Jorge do Ivaí) Altitudine435 m s.l.m. Superficie315,09 km² Abitant...