A seamount is a large submarine landform that rises from the ocean floor without reaching the water surface (sea level), and thus is not an island, islet, or cliff-rock. Seamounts are typically formed from extinct volcanoes that rise abruptly and are usually found rising from the seafloor to 1,000–4,000 m (3,300–13,100 ft) in height. They are defined by oceanographers as independent features that rise to at least 1,000 m (3,281 ft) above the seafloor, characteristically of conical form.[1] The peaks are often found hundreds to thousands of meters below the surface, and are therefore considered to be within the deep sea.[2] During their evolution over geologic time, the largest seamounts may reach the sea surface where wave action erodes the summit to form a flat surface. After they have subsided and sunk below the sea surface, such flat-top seamounts are called "guyots" or "tablemounts".[1]
Earth's oceans contain more than 14,500 identified seamounts,[3] of which 9,951 seamounts and 283 guyots, covering a total area of 8,796,150 km2 (3,396,210 sq mi), have been mapped[4] but only a few have been studied in detail by scientists. Seamounts and guyots are most abundant in the North Pacific Ocean, and follow a distinctive evolutionary pattern of eruption, build-up, subsidence and erosion. In recent years, several active seamounts have been observed, for example Kamaʻehuakanaloa (formerly Lōʻihi) in the Hawaiian Islands.
Because of their abundance, seamounts are one of the most common marine ecosystems in the world. Interactions between seamounts and underwater currents, as well as their elevated position in the water, attract plankton, corals, fish, and marine mammals alike. Their aggregational effect has been noted by the commercial fishing industry, and many seamounts support extensive fisheries. There are ongoing concerns on the negative impact of fishing on seamount ecosystems, and well-documented cases of stock decline, for example with the orange roughy (Hoplostethus atlanticus). 95% of ecological damage is done by bottom trawling, which scrapes whole ecosystems off seamounts.
Because of their large numbers, many seamounts remain to be properly studied, and even mapped. Bathymetry and satellite altimetry are two technologies working to close the gap. There have been instances where naval vessels have collided with uncharted seamounts; for example, Muirfield Seamount is named after the ship that struck it in 1973. However, the greatest danger from seamounts are flank collapses; as they get older, extrusions seeping in the seamounts put pressure on their sides, causing landslides that have the potential to generate massive tsunamis.
Geography
Seamounts can be found in every ocean basin in the world, distributed extremely widely both in space and in age. A seamount is technically defined as an isolated rise in elevation of 1,000 m (3,281 ft) or more from the surrounding seafloor, and with a limited summit area,[5] of conical form.[1] There are more than 14,500 seamounts.[3] In addition to seamounts, there are more than 80,000 small knolls, ridges and hills less than 1,000 m in height in the world's oceans.[4]
Most seamounts are volcanic in origin, and thus tend to be found on oceanic crust near mid-ocean ridges, mantle plumes, and island arcs. Overall, seamount and guyot coverage is greatest as a proportion of seafloor area in the North Pacific Ocean, equal to 4.39% of that ocean region. The Arctic Ocean has only 16 seamounts and no guyots, and the Mediterranean and Black seas together have only 23 seamounts and 2 guyots. The 9,951 seamounts which have been mapped cover an area of 8,088,550 km2 (3,123,010 sq mi). Seamounts have an average area of 790 km2 (310 sq mi), with the smallest seamounts found in the Arctic Ocean and the Mediterranean and Black Seas; whilst the largest mean seamount size, 890 km2 (340 sq mi), occurs in the Indian Ocean. The largest seamount has an area of 15,500 km2 (6,000 sq mi) and it occurs in the North Pacific. Guyots cover a total area of 707,600 km2 (273,200 sq mi) and have an average area of 2,500 km2 (970 sq mi), more than twice the average size of seamounts. Nearly 50% of guyot area and 42% of the number of guyots occur in the North Pacific Ocean, covering 342,070 km2 (132,070 sq mi). The largest three guyots are all in the North Pacific: the Kuko Guyot (estimated 24,600 km2 (9,500 sq mi)), Suiko Guyot (estimated 20,220 km2 (7,810 sq mi)) and the Pallada Guyot (estimated 13,680 km2 (5,280 sq mi)).[4]
Grouping
"Seamount chain" redirects here. For a broader coverage of this topic, see Undersea mountain range.
Seamounts are often found in groupings or submerged archipelagos, a classic example being the Emperor Seamounts, an extension of the Hawaiian Islands. Formed millions of years ago by volcanism, they have since subsided far below sea level. This long chain of islands and seamounts extends thousands of kilometers northwest from the island of Hawaii.
There are more seamounts in the Pacific Ocean than in the Atlantic, and their distribution can be described as comprising several elongate chains of seamounts superimposed on a more or less random background distribution.[6] Seamount chains occur in all three major ocean basins, with the Pacific having the most number and most extensive seamount chains. These include the Hawaiian (Emperor), Mariana, Gilbert, Tuomotu and Austral Seamounts (and island groups) in the north Pacific and the Louisville and Sala y Gomez ridges in the southern Pacific Ocean. In the North Atlantic Ocean, the New England Seamounts extend from the eastern coast of the United States to the mid-ocean ridge. Craig and Sandwell[6] noted that clusters of larger Atlantic seamounts tend to be associated with other evidence of hotspot activity, such as on the Walvis Ridge, Vitória-Trindade Ridge, Bermuda Islands and Cape Verde Islands. The mid-Atlantic ridge and spreading ridges in the Indian Ocean are also associated with abundant seamounts.[7] Otherwise, seamounts tend not to form distinctive chains in the Indian and Southern Oceans, but rather their distribution appears to be more or less random.
If all known seamounts were collected into one area, they would make a landform the size of Europe.[9] Their overall abundance makes them one of the most common, and least understood, marine structures and biomes on Earth,[10] a sort of exploratory frontier.[11]
Geology
Geochemistry and evolution
Most seamounts are built by one of two volcanic processes, although some, such as the Christmas Island Seamount Province near Australia, are more enigmatic.[12] Volcanoes near plate boundaries and mid-ocean ridges are built by decompression melting of rock in the upper mantle. The lower density magma rises through the crust to the surface. Volcanoes formed near or above subducting zones are created because the subducting tectonic plate adds volatiles to the overriding plate that lowers its melting point. Which of these two process involved in the formation of a seamount has a profound effect on its eruptive materials. Lava flows from mid-ocean ridge and plate boundary seamounts are mostly basaltic (both tholeiitic and alkalic), whereas flows from subducting ridge volcanoes are mostly calc-alkaline lavas. Compared to mid-ocean ridge seamounts, subduction zone seamounts generally have more sodium, alkali, and volatile abundances, and less magnesium, resulting in more explosive, viscous eruptions.[11]
All volcanic seamounts follow a particular pattern of growth, activity, subsidence and eventual extinction. The first stage of a seamount's evolution is its early activity, building its flanks and core up from the sea floor. This is followed by a period of intense volcanism, during which the new volcano erupts almost all (e.g. 98%) of its total magmatic volume. The seamount may even grow above sea level to become an oceanic island (for example, the 2009 eruption of Hunga Tonga). After a period of explosive activity near the ocean surface, the eruptions slowly die away. With eruptions becoming infrequent and the seamount losing its ability to maintain itself, the volcano starts to erode. After finally becoming extinct (possibly after a brief rejuvenated period), they are ground back down by the waves. Seamounts are built in a far more dynamic oceanic setting than their land counterparts, resulting in horizontal subsidence as the seamount moves with the tectonic plate towards a subduction zone. Here it is subducted under the plate margin and ultimately destroyed, but it may leave evidence of its passage by carving an indentation into the opposing wall of the subduction trench. The majority of seamounts have already completed their eruptive cycle, so access to early flows by researchers is limited by late volcanic activity.[11]
Ocean-ridge volcanoes in particular have been observed to follow a certain pattern in terms of eruptive activity, first observed with Hawaiian seamounts but now shown to be the process followed by all seamounts of the ocean-ridge type. During the first stage the volcano erupts basalt of various types, caused by various degrees of mantle melting. In the second, most active stage of its life, ocean-ridge volcanoes erupt tholeiitic to mildly alkalic basalt as a result of a larger area melting in the mantle. This is finally capped by alkalic flows late in its eruptive history, as the link between the seamount and its source of volcanism is cut by crustal movement. Some seamounts also experience a brief "rejuvenated" period after a hiatus of 1.5 to 10 million years, the flows of which are highly alkalic and produce many xenoliths.[11]
The most apparent lava flows at a seamount are the eruptive flows that cover their flanks, however igneous intrusions, in the forms of dikes and sills, are also an important part of seamount growth. The most common type of flow is pillow lava, named so after its distinctive shape. Less common are sheet flows, which are glassy and marginal, and indicative of larger-scale flows. Volcaniclasticsedimentary rocks dominate shallow-water seamounts. They are the products of the explosive activity of seamounts that are near the water's surface, and can also form from mechanical wear of existing volcanic rock.[11]
Structure
Seamounts can form in a wide variety of tectonic settings, resulting in a very diverse structural bank. Seamounts come in a wide variety of structural shapes, from conical to flat-topped to complexly shaped.[11] Some are built very large and very low, such as Koko Guyot[14] and Detroit Seamount;[15] others are built more steeply, such as Kamaʻehuakanaloa Seamount[16] and Bowie Seamount.[17] Some seamounts also have a carbonate or sedimentcap.[11]
Many seamounts show signs of intrusive activity, which is likely to lead to inflation, steepening of volcanic slopes, and ultimately, flank collapse.[11] There are also several sub-classes of seamounts. The first are guyots, seamounts with a flat top. These tops must be 200 m (656 ft) or more below the surface of the sea; the diameters of these flat summits can be over 10 km (6.2 mi).[18]Knolls are isolated elevation spikes measuring less than 1,000 meters (3,281 ft).[clarification needed] Lastly, pinnacles are small pillar-like seamounts.[5]
Ecology
Ecological role of seamounts
Seamounts are exceptionally important to their biome ecologically, but their role in their environment is poorly understood. Because they project out above the surrounding sea floor, they disturb standard water flow, causing eddies and associated hydrological phenomena that ultimately result in water movement in an otherwise still ocean bottom. Currents have been measured at up to 0.9 knots, or 48 centimeters per second. Because of this upwelling seamounts often carry above-average plankton populations, seamounts are thus centers where the fish that feed on them aggregate, in turn falling prey to further predation, making seamounts important biological hotspots.[5]
Seamounts provide habitats and spawning grounds for these larger animals, including numerous fish. Some species, including black oreo(Allocyttus niger) and blackstripe cardinalfish(Apogon nigrofasciatus), have been shown to occur more often on seamounts than anywhere else on the ocean floor. Marine mammals, sharks, tuna, and cephalopods all congregate over seamounts to feed, as well as some species of seabirds when the features are particularly shallow.[5]
Seamounts often project upwards into shallower zones more hospitable to sea life, providing habitats for marine species that are not found on or around the surrounding deeper ocean bottom. Because seamounts are isolated from each other they form "undersea islands" creating the same biogeographical interest. As they are formed from volcanic rock, the substrate is much harder than the surrounding sedimentary deep sea floor. This causes a different type of fauna to exist than on the seafloor, and leads to a theoretically higher degree of endemism.[20] However, recent research especially centered at Davidson Seamount suggests that seamounts may not be especially endemic, and discussions are ongoing on the effect of seamounts on endemicity. They have, however, been confidently shown to provide a habitat to species that have difficulty surviving elsewhere.[21][22]
The volcanic rocks on the slopes of seamounts are heavily populated by suspension feeders, particularly corals, which capitalize on the strong currents around the seamount to supply them with food. These coral are therefore host to numerous other organisms in a commensal relationship, for example brittle stars, who climb the coral to get themselves off the seafloor, helping them to catch food particles, or small zooplankton, as they drift by.[23] This is in sharp contrast with the typical deep-sea habitat, where deposit-feeding animals rely on food they get off the ground.[5] In tropical zones extensive coral growth results in the formation of coral atolls late in the seamount's life.[22][24]
Seamounts may thus be vital stopping points for some migratory animals, specifically whales. Some recent research indicates whales may use such features as navigational aids throughout their migration.[27] For a long time it has been surmised that many pelagic animals visit seamounts as well, to gather food, but proof of this aggregating effect has been lacking. The first demonstration of this conjecture was published in 2008.[28]
Fishing
The effect that seamounts have on fish populations has not gone unnoticed by the commercial fishing industry. Seamounts were first extensively fished in the second half of the 20th century, due to poor management practices and increased fishing pressure seriously depleting stock numbers on the typical fishing ground, the continental shelf. Seamounts have been the site of targeted fishing since that time.[29]
Nearly 80 species of fish and shellfish are commercially harvested from seamounts, including spiny lobster (Palinuridae), mackerel (Scombridae and others), red king crab (Paralithodes camtschaticus), red snapper (Lutjanus campechanus), tuna (Scombridae), Orange roughy (Hoplostethus atlanticus), and perch (Percidae).[5]
Conservation
The ecological conservation of seamounts is hurt by the simple lack of information available. Seamounts are very poorly studied, with only 350 of the estimated 100,000 seamounts in the world having received sampling, and fewer than 100 in depth.[30] Much of this lack of information can be attributed to a lack of technology,[clarification needed] and to the daunting task of reaching these underwater structures; the technology to fully explore them has only been around the last few decades. Before consistent conservation efforts can begin, the seamounts of the world must first be mapped, a task that is still in progress.[5]
Overfishing is a serious threat to seamount ecological welfare. There are several well-documented cases of fishery exploitation, for example the orange roughy (Hoplostethus atlanticus) off the coasts of Australia and New Zealand and the pelagic armorhead (Pseudopentaceros richardsoni) near Japan and Russia.[5] The reason for this is that the fishes that are targeted over seamounts are typically long-lived, slow-growing, and slow-maturing. The problem is confounded by the dangers of trawling, which damages seamount surface communities, and the fact that many seamounts are located in international waters, making proper monitoring difficult.[29]Bottom trawling in particular is extremely devastating to seamount ecology, and is responsible for as much as 95% of ecological damage to seamounts.[31]
Corals from seamounts are also vulnerable, as they are highly valued for making jewellery and decorative objects. Significant harvests have been produced from seamounts, often leaving coral beds depleted.[5]
Individual nations are beginning to note the effect of fishing on seamounts, and the European Commission has agreed to fund the OASIS project, a detailed study of the effects of fishing on seamount communities in the North Atlantic.[29] Another project working towards conservation is CenSeam, a Census of Marine Life project formed in 2005. CenSeam is intended to provide the framework needed to prioritise, integrate, expand and facilitate seamount research efforts in order to significantly reduce the unknown and build towards a global understanding of seamount ecosystems, and the roles they have in the biogeography, biodiversity, productivity and evolution of marine organisms.[30][32]
Possibly the best ecologically studied seamount in the world is Davidson Seamount, with six major expeditions recording over 60,000 species observations. The contrast between the seamount and the surrounding area was well-marked.[21] One of the primary ecological havens on the seamount is its deep sea coral garden, and many of the specimens noted were over a century old.[19] Following the expansion of knowledge on the seamount there was extensive support to make it a marine sanctuary, a motion that was granted in 2008 as part of the Monterey Bay National Marine Sanctuary.[33] Much of what is known about seamounts ecologically is based on observations from Davidson.[19][28] Another such seamount is Bowie Seamount, which has also been declared a marine protected area by Canada for its ecological richness.[34]
Exploration
The study of seamounts has been hindered for a long time by the lack of technology. Although seamounts have been sampled as far back as the 19th century, their depth and position meant that the technology to explore and sample seamounts in sufficient detail did not exist until the last few decades. Even with the right technology available,[clarification needed] only a scant 1% of the total number have been explored,[9] and sampling and information remains biased towards the top 500 m (1,640 ft).[5] New species are observed or collected and valuable information is obtained on almost every submersible dive at seamounts.[10]
Before seamounts and their oceanographic impact can be fully understood, they must be mapped, a daunting task due to their sheer number.[5] The most detailed seamount mappings are provided by multibeam echosounding (sonar), however after more than 5000 publicly held cruises, the amount of the sea floor that has been mapped remains minuscule. Satellite altimetry is a broader alternative, albeit not as detailed, with 13,000 catalogued seamounts; however this is still only a fraction of the total 100,000. The reason for this is that uncertainties in the technology limit recognition to features 1,500 m (4,921 ft) or larger. In the future, technological advances could allow for a larger and more detailed catalogue.[24]
Observations from CryoSat-2 combined with data from other satellites has shown thousands of previously uncharted seamounts, with more to come as data is interpreted.[35][36][37][38]
Deep-sea mining
Seamounts are a possible future source of economically important metals. Even though the ocean makes up 70% of Earth's surface area, technological challenges have severely limited the extent of deep sea mining. But with the constantly decreasing supply on land, some mining specialists see oceanic mining as the destined future, and seamounts stand out as candidates.[39]
Seamounts are abundant, and all have metal resource potential because of various enrichment processes during the seamount's life. An example for epithermalgold mineralization on the seafloor is Conical Seamount, located about 8 km south of Lihir Island in Papua New Guinea. Conical Seamount has a basal diameter of about 2.8 km and rises about 600 m above the seafloor to a water depth of 1050 m. Grab samples from its summit contain the highest gold concentrations yet reported from the modern seafloor (max. 230 g/t Au, avg. 26 g/t, n=40).[40]Iron-manganese, hydrothermaliron oxide, sulfide, sulfate, sulfur, hydrothermal manganese oxide, and phosphorite[41] (the latter especially in parts of Micronesia) are all mineral resources that are deposited upon or within seamounts. However, only the first two have any potential of being targeted by mining in the next few decades.[39]
Some seamounts have not been mapped and thus pose a navigational danger. For instance, Muirfield Seamount is named after the ship that hit it in 1973.[43] More recently, the submarine USS San Francisco ran into an uncharted seamount in 2005 at a speed of 35 knots (40.3 mph; 64.8 km/h), sustaining serious damage and killing one seaman.[42]
One major seamount risk is that often, in the late of stages of their life, extrusions begin to seep in the seamount. This activity leads to inflation, over-extension of the volcano's flanks, and ultimately flank collapse, leading to submarine landslides with the potential to start major tsunamis, which can be among the largest natural disasters in the world. In an illustration of the potent power of flank collapses, a summit collapse on the northern edge of Vlinder Seamount resulted in a pronounced headwallscarp and a field of debris up to 6 km (4 mi) away.[11] A catastrophic collapse at Detroit Seamount flattened its whole structure extensively.[15] Lastly, in 2004, scientists found marine fossils 61 m (200 ft) up the flank of Kohala mountain in Hawaii. Subsidation analysis found that at the time of their deposition, this would have been 500 m (1,640 ft) up the flank of the volcano,[44] far too high for a normal wave to reach. The date corresponded with a massive flank collapse at the nearby Mauna Loa, and it was theorized that it was a massive tsunami, generated by the landslide, that deposited the fossils.[45]
^Kitchingman, A., Lai, S., 2004. Inferences on Potential Seamount Locations from Mid-Resolution Bathymetric Data. in: Morato, T., Pauly, D. (Eds.), FCRR Seamounts: Biodiversity and Fisheries. Fisheries Centre Research Reports. University of British Columbia, Vanvouver, BC, pages 7–12.
^ abMorato, T., Varkey, D.A., Damaso, C., Machete, M., Santos, M., Prieto, R., Santos, R.S. and Pitcher, T.J. (2008). "Evidence of a seamount effect on aggregating visitors". Marine Ecology Progress Series 357: pages 23–32.
^Sandwell, David T.; Müller, R. Dietmar; Smith, Walter H. F.; Garcia, Emmanuel; Francis, Richard (2014). "New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure". Science. 346 (6205): 65–67. Bibcode:2014Sci...346...65S. doi:10.1126/science.1258213. PMID25278606. S2CID31851740.
^Muller, Daniel; Leander Franz; Sven Petersen; Peter Herzig; Mark Hannington (2003). "Comparison between magmatic activity and gold mineralization at Conical Seamount and Lihir Island, Papua New Guinea". Mineralogy and Petrology. 79 (3–4): 259–283. Bibcode:2003MinPe..79..259M. doi:10.1007/s00710-003-0007-3. S2CID129643758.
^Nigel Calder (2002). How to Read a Navigational Chart: A Complete Guide to the Symbols, Abbreviations, and Data Displayed on Nautical Charts. International Marine/Ragged Mountain Press.
^Seach, John. "Kohala Volcano". Volcanism reference base. John Seach, vulcanologist. Retrieved 25 July 2010.
Keating, B.H., Fryer, P., Batiza, R., Boehlert, G.W. (Eds.), 1987: Seamounts, islands and atolls. Geophys. Monogr. 43:319–334.
Menard, H.W. (1964). Marine Geology of the Pacific. International Series in the Earth Sciences. McGraw-Hill, New York, 271 pp.
Ecology
Clark, M. R.; Rowden, A. A.; Schlacher, T.; Williams, A.; Consalvey, M.; Stocks, K. I.; Rogers, A. D.; O'Hara, T. D.; White, M.; Shank, T. M.; Hall-Spencer, J. M. (2010). "The Ecology of Seamounts: Structure, Function, and Human Impacts". Annual Review of Marine Science. 2: 253–278. Bibcode:2010ARMS....2..253C. doi:10.1146/annurev-marine-120308-081109. hdl:10026.1/1339. PMID21141665.
Lukisan di Val Camonica, Italia, c.10,000 SM, menggambarkan pengunjung dari luar angkasa. Namun mungkin juga yang mereka gambarkan adalah dewa atau tokoh mitologi pada masa tersebut. Dogū (土偶) diduga sebagai antariksawan kuno yang mengunjungi bumi selama periode Jomon. Menurut teori antariksawan kuno, kehidupan ekstraterestrial yang maju (disebut antariksawan kuno atau alien kuno) telah mengunjungi bumi dan kontak antara manusia kuno dengan alien memberikan pengaruh terhadap perkembangan...
Charlotte GainsbourgGainsbourg 2022LahirCharlotte Lucy Gainsbourg21 Juli 1971 (umur 52)London, InggrisKebangsaan Inggris Prancis Pekerjaan Pemeran penyanyi penulis lagu Tahun aktif1984–kiniPasanganYvan Attal (hidup bersama sejak 1991)Anak3Orang tuaSerge Gainsbourg (bapak)Jane Birkin (ibu)Karier musikGenreRock alternatifindie popdream popLabel Phonogram Because Atlantic Vice Elektra Artis terkait Beck Nigel Godrich Sebastian Situs webcharlotte-gainsbourg.com Charlotte Lucy Gainsbo...
American social scientist Donald T. CampbellBorn(1916-11-20)November 20, 1916Grass Lake, Michigan, U.S.DiedMay 6, 1996(1996-05-06) (aged 79)Bethlehem, Pennsylvania, U.S.NationalityAmericanAlma materUniversity of California, BerkeleyScientific careerFieldsPsychology, social scienceInstitutionsLehigh UniversityNorthwestern University Donald Thomas Campbell (November 20, 1916 – May 6, 1996) was an American social scientist. He is noted for his work in methodology. He coined the term ...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Kepulauan Barat Daya – berita · surat kabar · buku · cendekiawan · JSTOR Kepulauan Barat Daya terdiri dari sekelompok pulau dalam Kepulauan Maluku yang secara administratif termasuk dalam wilayah Provins...
Onorio Savelli, VII signore di RignanoSignore di RignanoStemma In carica1545 –1568 PredecessorePaolo Savelli, VI signore di Rignano SuccessoreLucio Savelli, VIII signore di Rignano TrattamentoSua Eccellenza NascitaRoma, ? MorteRoma, 1607 DinastiaSavelli PadrePaolo Savelli, VI signore di Rignano MadreDianora Orsini ConsorteCamilla Orsini Religionecattolicesimo Onorio Savelli, VII signore di Rignano (Roma, ... – Roma, 1607), è stato un nobile e criminale italiano. Indice 1 ...
Group of neural structures responsible for motivation and desire The reward system (the mesocorticolimbic circuit) is a group of neural structures responsible for incentive salience (i.e., wanting; desire or craving for a reward and motivation), associative learning (primarily positive reinforcement and classical conditioning), and positively-valenced emotions, particularly ones involving pleasure as a core component (e.g., joy, euphoria and ecstasy).[1][2] Reward is the attra...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Daftar Bupati Purworejo – berita · surat kabar · buku · cendekiawan · JSTOR Bupati PurworejoPetahanaYuli Hastutisejak 9 November 2023KediamanJl. Proklamasi PurworejoDibentuk5 Oktober 901Pejabat pert...
Claes Rålamb Claes Rålamb (8 maggio 1622 – Strängnäs, 14 marzo 1698) è stato un politico svedese. Nel biennio 1657-1658 guidò un'ambasciata presso la Sublime porta (Impero ottomano), riportando in patria una preziosa collezione di miniature raffiguranti i costumi in uso al tempo presso la corte dei turchi (c.d. Libro di costumi Ralamb). Nel 1660 venne nominato governatore della Contea di Uppland e nel 1664 entrò nel Riksråd. Tra il 1673 ed il 1678 servì come sovra-governatore di St...
Irish knight (1298–1338) Sir Edmund de BurghEdmund de BúrcaBorn1298Died1338ChildrenSir Richard BurkeSir David BurkeParentRichard Óg de Burgh, 2nd Earl of UlsterRelativesJohn de Burgh (brother) Sir Edmund de Burgh (English: /dˈbɜːr/; d’-BER; 1298–1338) was an Irish knight and ancestor of the Burke family of Clanwilliam. Background De Burgh was the fifth and last surviving son of Richard, Lord of Connaught and Earl of Ulster. His elder brother, John de Burgh, died at Galway in 1313 a...
Meppel, adalah sebuah gemeente Belanda yang terletak di provinsi Drenthe. Pada tahun 2021 daerah ini memiliki penduduk sebesar 34.400 jiwa. Lihat pula Daftar munisipalitas Belanda lbsMunisipalitas di provinsi Drenthe Aa en Hunze Assen Borger-Odoorn Coevorden De Wolden Emmen Hoogeveen Meppel Midden-Drenthe Noordenveld Tynaarlo Westerveld Artikel bertopik geografi atau tempat Belanda ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs
American political advocacy organization R Street InstituteFormation2012TypeThink tankHeadquarters1212 New York Ave. NW, Suite 900Washington, DC 20005LocationWashington, D.C.PresidentEli LehrerRevenue (2015) $4,164,948[1]Expenses (2015)$3,471,241[1]Websitewww.rstreet.org The R Street Institute is an American center-right think tank headquartered in Washington, D.C.[2] The institute's stated mission is to engage in policy research and outreach to promote free markets an...
2017 single by Jaspreet Jasz and Rita Thyagarajan This article is about the song released in 2017. For the 2021 film, see Seetimaarr. Seeti MaarSingle by Jaspreet Jasz and Rita Thyagarajanfrom the album DJ: Duvvada Jagannadham LanguageTeluguReleasedAugust 22, 2017 (2017-08-22)Recorded2017GenreIndian popFilmiLength4:10LabelAditya MusicComposer(s)Devi Sri PrasadLyricist(s)BalajiProducer(s)Devi Sri PrasadJaspreet Jasz and Rita Thyagarajan singles chronology Sundari (2016) Seeti Ma...
Walter ScheelWalter Scheel pada 1974 Presiden Jerman(Jerman Barat)Masa jabatan1 Juli 1974 – 30 Juni 1979KanselirHelmut SchmidtPendahuluGustav HeinemannPenggantiKarl CarstensKanselir Jerman(Jerman Barat)Pelaksana jabatanMasa jabatan7 Mei 1974 – 16 Mei 1974PendahuluWilly BrandtPenggantiHelmut SchmidtWakil Kanselir Jerman(West Germany)Masa jabatan21 Oktober 1969 – 16 Mei 1974KanselirWilly BrandtPendahuluWilly BrandtPenggantiHans-Dietrich GenscherWakil Presiden Bu...
Xa lộ Liên tiểu bang 20 Thông tin về xa lộ Chiều dài: 1.539,38 dặm (2.477,39 km)[1] Hiện diện: 1957 đến nay Các điểm giao tiếp chính Đầu tây: I-8 gần Kent, TX I-30 gần Fort Worth, TX I-35W tại Fort Worth, TX I-35E tại Dallas, TX I-45 tại Dallas, TX I-49 tại Shreveport, LA I-55 tại Jackson, MS I-65 tại Birmingham, AL I-75 / I-85 tại Atlanta, GA Đầu đông: I-95 / I-20 Bus gần Florence, S.C. Liên kết đến hệ thống H�...
Ini adalah nama Batak Toba, marganya adalah Hutapea. Yemima HutapeaNama lahirYemima Putri Alma Lamtiur HutapeaLahir2 September 1996 (umur 27) Jakarta, IndonesiaAsalIndonesiaGenrepopPekerjaanPenyanyiInstrumenVokalTahun aktif2014–sekarangLabelHits Records Yemima Records Yemima Hutapea (lahir 2 September 1995) atau yang akrab dipanggil MIMA merupakan seorang penyanyi berkebangsaan Indonesia. Dia memulai kariernya sebagai 2nd runner up di Miss Indonesia 2013. Sebelumnya telah lebih dulu mu...
2009 Jarama Superleague Formula roundSuperleague Formula round SpainCircuit MapDateNovember 8, 2009Location Circuito del Jarama, SpainCoursePermanent racing facility 2.115 mi (3.404 km)Laps34 & 31Pole positionTeam Sevilla FC Sébastien BourdaisTime 1:20.397Podium (1st race)First R.S.C. Anderlecht Yelmer BuurmanSecond Sevilla FC Sébastien BourdaisThird A.C. Milan Giorgio PantanoFastest lap (1st race)Team R.S.C. Anderlecht Yelmer BuurmanTime 1:20.011 (on lap 13)Podium (2nd race)F...
Regional parliament of Amur Oblast, Russia You can help expand this article with text translated from the corresponding article in Russian. (April 2022) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not tra...
Diocesan bishop in the Church of England For the Roman Catholic Bishop of Norwich, Connecticut, see Roman Catholic Diocese of Norwich. Bishop of NorwichBishopricanglican Incumbent:Graham UsherLocationEcclesiastical provinceCanterburyResidenceBishop's House, NorwichInformationFirst holderBedwinusHerbert de Losinga (first bishop at Norwich)Established6721094 (translated to Norwich)DioceseNorwichCathedralNorwich Cathedral (since 1094) Arms of the See of Norwich: Azure, three mitres labelled or...