Luke's variational principle

In fluid dynamics, Luke's variational principle is a Lagrangian variational description of the motion of surface waves on a fluid with a free surface, under the action of gravity. This principle is named after J.C. Luke, who published it in 1967.[1] This variational principle is for incompressible and inviscid potential flows, and is used to derive approximate wave models like the mild-slope equation,[2] or using the averaged Lagrangian approach for wave propagation in inhomogeneous media.[3]

Luke's Lagrangian formulation can also be recast into a Hamiltonian formulation in terms of the surface elevation and velocity potential at the free surface.[4][5][6] This is often used when modelling the spectral density evolution of the free-surface in a sea state, sometimes called wave turbulence.

Both the Lagrangian and Hamiltonian formulations can be extended to include surface tension effects, and by using Clebsch potentials to include vorticity.[1]

Luke's Lagrangian

Luke's Lagrangian formulation is for non-linear surface gravity waves on an—incompressible, irrotational and inviscidpotential flow.

The relevant ingredients, needed in order to describe this flow, are:

  • Φ(x,z,t) is the velocity potential,
  • ρ is the fluid density,
  • g is the acceleration by the Earth's gravity,
  • x is the horizontal coordinate vector with components x and y,
  • x and y are the horizontal coordinates,
  • z is the vertical coordinate,
  • t is time, and
  • is the horizontal gradient operator, so ∇Φ is the horizontal flow velocity consisting of ∂Φ/∂x and ∂Φ/∂y,
  • V(t) is the time-dependent fluid domain with free surface.

The Lagrangian , as given by Luke, is:

From Bernoulli's principle, this Lagrangian can be seen to be the integral of the fluid pressure over the whole time-dependent fluid domain V(t). This is in agreement with the variational principles for inviscid flow without a free surface, found by Harry Bateman.[7]

Variation with respect to the velocity potential Φ(x,z,t) and free-moving surfaces like z = η(x,t) results in the Laplace equation for the potential in the fluid interior and all required boundary conditions: kinematic boundary conditions on all fluid boundaries and dynamic boundary conditions on free surfaces.[8] This may also include moving wavemaker walls and ship motion.

For the case of a horizontally unbounded domain with the free fluid surface at z = η(x,t) and a fixed bed at z = −h(x), Luke's variational principle results in the Lagrangian:

The bed-level term proportional to h2 in the potential energy has been neglected, since it is a constant and does not contribute in the variations. Below, Luke's variational principle is used to arrive at the flow equations for non-linear surface gravity waves on a potential flow.

Derivation of the flow equations resulting from Luke's variational principle

The variation in the Lagrangian with respect to variations in the velocity potential Φ(x,z,t), as well as with respect to the surface elevation η(x,t), have to be zero. We consider both variations subsequently.

Variation with respect to the velocity potential

Consider a small variation δΦ in the velocity potential Φ.[8] Then the resulting variation in the Lagrangian is:

Using Leibniz integral rule, this becomes, in case of constant density ρ:[8]

The first integral on the right-hand side integrates out to the boundaries, in x and t, of the integration domain and is zero since the variations δΦ are taken to be zero at these boundaries. For variations δΦ which are zero at the free surface and the bed, the second integral remains, which is only zero for arbitrary δΦ in the fluid interior if there the Laplace equation holds: with Δ = ∇ ⋅ ∇ + ∂2/∂z2 the Laplace operator.

If variations δΦ are considered which are only non-zero at the free surface, only the third integral remains, giving rise to the kinematic free-surface boundary condition:

Similarly, variations δΦ only non-zero at the bottom z = −h result in the kinematic bed condition:

Variation with respect to the surface elevation

Considering the variation of the Lagrangian with respect to small changes δη gives:

This has to be zero for arbitrary δη, giving rise to the dynamic boundary condition at the free surface:

This is the Bernoulli equation for unsteady potential flow, applied at the free surface, and with the pressure above the free surface being a constant — which constant pressure is taken equal to zero for simplicity.

Hamiltonian formulation

The Hamiltonian structure of surface gravity waves on a potential flow was discovered by Vladimir E. Zakharov in 1968, and rediscovered independently by Bert Broer and John Miles:[4][5][6] where the surface elevation η and surface potential φ — which is the potential Φ at the free surface z = η(x,t) — are the canonical variables. The Hamiltonian is the sum of the kinetic and potential energy of the fluid:

The additional constraint is that the flow in the fluid domain has to satisfy Laplace's equation with appropriate boundary condition at the bottom z = −h(x) and that the potential at the free surface z = η is equal to φ:

Relation with Lagrangian formulation

The Hamiltonian formulation can be derived from Luke's Lagrangian description by using Leibniz integral rule on the integral of ∂Φ/∂t:[6] with the value of the velocity potential at the free surface, and the Hamiltonian density — sum of the kinetic and potential energy density — and related to the Hamiltonian as:

The Hamiltonian density is written in terms of the surface potential using Green's third identity on the kinetic energy:[9]

where D(η) φ is equal to the normal derivative of ∂Φ/∂n at the free surface. Because of the linearity of the Laplace equation — valid in the fluid interior and depending on the boundary condition at the bed z = −h and free surface z = η — the normal derivative ∂Φ/∂n is a linear function of the surface potential φ, but depends non-linear on the surface elevation η. This is expressed by the Dirichlet-to-Neumann operator D(η), acting linearly on φ.

The Hamiltonian density can also be written as:[6] with w(x,t) = ∂Φ/∂z the vertical velocity at the free surface z = η. Also w is a linear function of the surface potential φ through the Laplace equation, but w depends non-linear on the surface elevation η:[9] with W operating linear on φ, but being non-linear in η. As a result, the Hamiltonian is a quadratic functional of the surface potential φ. Also the potential energy part of the Hamiltonian is quadratic. The source of non-linearity in surface gravity waves is through the kinetic energy depending non-linear on the free surface shape η.[9]

Further φ is not to be mistaken for the horizontal velocity ∇Φ at the free surface:

Taking the variations of the Lagrangian with respect to the canonical variables and gives: provided in the fluid interior Φ satisfies the Laplace equation, ΔΦ = 0, as well as the bottom boundary condition at z = −h and Φ = φ at the free surface.

References and notes

  1. ^ a b J. C. Luke (1967). "A Variational Principle for a Fluid with a Free Surface". Journal of Fluid Mechanics. 27 (2): 395–397. Bibcode:1967JFM....27..395L. doi:10.1017/S0022112067000412. S2CID 123409273.
  2. ^ M. W. Dingemans (1997). Water Wave Propagation Over Uneven Bottoms. Advanced Series on Ocean Engineering. Vol. 13. Singapore: World Scientific. p. 271. ISBN 981-02-0427-2.
  3. ^ G. B. Whitham (1974). Linear and Nonlinear Waves. Wiley-Interscience. p. 555. ISBN 0-471-94090-9.
  4. ^ a b V. E. Zakharov (1968). "Stability of Periodic Waves of Finite Amplitude on the Surface of a Deep Fluid". Journal of Applied Mechanics and Technical Physics. 9 (2): 190–194. Bibcode:1968JAMTP...9..190Z. doi:10.1007/BF00913182. S2CID 55755251. Originally appeared in Zhurnal Prildadnoi Mekhaniki i Tekhnicheskoi Fiziki 9(2): 86–94, 1968.
  5. ^ a b L. J. F. Broer (1974). "On the Hamiltonian Theory of Surface Waves". Applied Scientific Research. 29: 430–446. doi:10.1007/BF00384164.
  6. ^ a b c d J. W. Miles (1977). "On Hamilton's Principle for Surface Waves". Journal of Fluid Mechanics. 83 (1): 153–158. Bibcode:1977JFM....83..153M. doi:10.1017/S0022112077001104. S2CID 121777750.
  7. ^ H. Bateman (1929). "Notes on a Differential Equation Which Occurs in the Two-Dimensional Motion of a Compressible Fluid and the Associated Variational Problems". Proceedings of the Royal Society of London A. 125 (799): 598–618. Bibcode:1929RSPSA.125..598B. doi:10.1098/rspa.1929.0189.
  8. ^ a b c G. W. Whitham (1974). Linear and Nonlinear Waves. New York: Wiley. pp. 434–436. ISBN 0-471-94090-9.
  9. ^ a b c D. M. Milder (1977). "A note on: 'On Hamilton's principle for surface waves'". Journal of Fluid Mechanics. 83 (1): 159–161. Bibcode:1977JFM....83..159M. doi:10.1017/S0022112077001116. S2CID 123609842.

Read other articles:

BaphuonAgamaAfiliasiHinduLokasiLokasiAngkor ThomNegaraKambojaArsitekturTipeKhmerDibuat olehUdayadityawarman II Baphuon (bahasa Khmer: ប្រាសាទបាពួន) adalah sebuah candi di Angkor, Kamboja. Candi ini berlokasi di Angkor Thom, barat laut Bayon. Dibuat pada pertengahan abad ke-11, candi ini bukit candi bertingkat tiga yang dibangun sebagai candi negara Udayadityawarman II yang didedikasikan kepada dewa Hindu Siwa. Referensi Pranala luar BBC, Cambodia completes Angkor t...

 

 

The White RibbonPoster rilis teatrikalSutradaraMichael HanekeProduserStefan ArndtVeit HeiduschkaMichael KatzMargaret MénégozAndrea OcchipintiDitulis olehMichael HanekePemeranChristian FriedelUlrich TukurJosef BierbichlerNaratorErnst JacobiSinematograferChristian BergerPenyuntingMonika WilliPerusahaanproduksiWega FilmX FilmeDistributorFilmladen (Austria)X Verleih AG (Germany)Tanggal rilis 21 Mei 2009 (2009-05-21) (Cannes) Durasi144 menit [1]BahasaJerman[2]AnggaranUS$...

 

 

Kleinbettingen (lb) Klengbetten L'église Saint-Cyriaque. Administration Pays Luxembourg Canton Capellen Commune Steinfort Code postal L-8307 (liste détaillée) Démographie Population 1 123 hab.[1] (31 décembre 2022) Géographie Coordonnées 49° 39′ nord, 5° 55′ est Localisation Géolocalisation sur la carte : Luxembourg Kleinbettingen Géolocalisation sur la carte : Luxembourg Kleinbettingen Géolocalisation sur la carte : canton de...

Pendudukan Armenia Turki1915–1918 BenderaArmenia Barat di September 1917Ibu kotaVanBahasa yang umum digunakanArmeniaAgama Apostolik ArmeniaIslam SunniPemerintahanPemerintahan sementaraGubernur • 1915 – 1917 Aram Manukian• 1917 – 1918 Tovmas Nazarbekian• 1918 – 1918 Andranik Ozanian Era SejarahPerang Dunia I• Pengepungan Van April–Mei 1915• Revolusi Rusia 8 Maret – 8 November 1917• Perjanjian Brest-Litovsk 3 Maret 1918• Tur...

 

 

Opera by Gaetano Donizetti Lucrezia BorgiaOpera by Gaetano DonizettiThérèse Tietjens in the title roleLibrettistFelice RomaniLanguageItalianBased onLucrezia Borgiaby Victor HugoPremiere26 December 1833 (1833-12-26)La Scala, Milan Lucrezia Borgia is a melodramatic opera in a prologue and two acts by Gaetano Donizetti. Felice Romani wrote the Italian libretto after the play Lucrezia Borgia by Victor Hugo, in its turn after the legend of Lucrezia Borgia. Lucrezia Borgia was firs...

 

 

Not to be confused with Wake Forest University. Private liberal arts college in Lake Forest, Illinois, U.S. Lake Forest CollegeFormer namesLind University (1857–1865)Lake Forest University (1865–1965)MottoEt veritas liberabit vos (Latin)Motto in EnglishAnd the truth shall set you free[1] (John 8:32)TypePrivate liberal arts collegeEstablished1857; 167 years ago (1857)Religious affiliationNonsectarianPresbyterian (historically)Academic affiliationsACMAnnapolis...

1999 American romantic drama film by Roger Kumble This article is about the 1999 film. For other uses, see Cruel Intentions (disambiguation). Cruel IntentionsTheatrical release posterDirected byRoger KumbleScreenplay byRoger KumbleBased onLes Liaisons dangereusesby Pierre Choderlos de LaclosProduced byNeal H. MoritzStarring Sarah Michelle Gellar Ryan Phillippe Reese Witherspoon Selma Blair CinematographyTheo van de SandeEdited by Jeff Freeman Music byEdward ShearmurProductioncompanies Columbi...

 

 

  关于与「友谊勋章 (俄罗斯)」標題相近或相同的条目页,請見「友谊勋章 (消歧义)」。 友谊勋章类型单级勋章(仅设有一个等级)授予原因加强各民族友谊、交流与合作国家/地区俄罗斯 颁发单位 俄羅斯颁授资格俄罗斯国民及世界各民族人民設立時間1994年3月2日[1]首次颁发康斯坦丁·蒂托夫(萨马拉州州长)绶带 优先顺序上等荣誉勋章下等光荣父母�...

 

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

Berikut startups telah menyelesaikan Y Combinator Program akselerator. Mike Isaac menjelaskan Y Combinator sebagai: Y Combinator menerima angkatan dari start-up dua kali dalam setahun di tiap semester sistem dan memberi mereka uang, saran dan akses ke jaringan luas start-up pendiri dan teknolog yang bisa memberikan saran pada mereka.[1] Musim dingin 2016 Ada 119 perusahaan[2][3] Boom Able Health Acre Design Airmada AlphaFlow Birdly Bonsai CareSkore Castle Castle.io Cha...

 

 

Soviet rocket scientist Mikhail Tikhonravov in 1925 Mikhail Klavdievich Tikhonravov (July 29, 1900 – March 3, 1974) was a Soviet engineer who was a pioneer of spacecraft design and rocketry. Mikhail Tikhonravov was born in Vladimir, Russia. He attended the Zhukovsky Air Force Academy from 1922 to 1925, where he was exposed to Konstantin Tsiolkovsky's ideas of spaceflight. After graduation and until 1931 worked in several aircraft industries and was engaged in developing gliders. From 1931 a...

 

 

  Lihat Bahasa Bugis di: ISO  • Ethnologue  • Wikipedia bahasa Inggris Bahasa Bugis Basa Ugi ᨅᨔ ᨕᨘᨁᨗ بهاس بوڬيس Dituturkan diIndonesiaWilayahSulawesi SelatanEtnisBugisPenutur4 juta (termasuk 500.000 penutur B2) (2015 UNSD) Rumpun bahasaAustronesia Melayu-PolinesiaSulawesi SelatanBugisBahasa Bugis Sistem penulisanLontara, Alfabet Latin dan Jawi-SerangKode bahasaISO 639-2bugISO 639-3bugGlottologbugi1244[1]IETFbug Status pemertahana...

Isma'ilism This article is about the defunct Ismaili sub-sect. For the Ismaili Muslim faith overall, see Isma'ilism. Part of a series on IslamIsma'ilism Concepts Quran Taʾwīl Imamate Ẓāhir Bātin Nūr 'Aql ʿIlm Daʿwa Dāʿī Bāb Hujja Satr Taqiya Pīr Numerology Panentheism Reincarnation Titles Seven Pillars Walayah Purity Prayer Charity Fasting Pilgrimage Musta'li and Nizari historyBranches/sects Sevener Qarmatians Nizari Assassins Musta'li Tayyibi Dawoodi Bohras Hebtiahs Atba-i-Mala...

 

 

ضريح فولينغ   إحداثيات 41°49′34″N 123°34′49″E / 41.826111111111°N 123.58027777778°E / 41.826111111111; 123.58027777778   معلومات عامة الدولة الصين  المساحة 53.86 هكتار،  و702.36 هكتار  موقع اليونيسكو للتراث العالمي رقم التعريف 1004-013  معلومات أخرى تعديل مصدري - تعديل   ضريح فولينغ (بالـ�...

 

 

2018 single by Toby KeithDon't Let the Old Man InSingle by Toby Keithfrom the album Greatest Hits: The Show Dog Years ReleasedDecember 7, 2018 (2018-12-07)[1]GenreCountryLength2:51LabelShow Dog-Universal MusicSongwriter(s)Toby KeithProducer(s)Arturo Buenahora Jr.Toby KeithF. Reid ShippenToby Keith singles chronology Wacky Tobaccy (2017) Don't Let the Old Man In (2018) That's Country Bro (2019) Don't Let the Old Man In is a song written and recorded by American country m...

日本の政治家重徳 和彦しげとく かずひこ 2014年3月23日(43歳)生年月日 (1970-12-21) 1970年12月21日(53歳)出生地 日本 愛知県豊田市今町出身校 東京大学法学部コロンビア大学国際公共政策大学院前職 国家公務員(総務省)所属政党 (無所属→)(日本維新の会→)(維新の党→)(無所属→)(改革結集の会→)(民進党(野田G)→)(無所属→)立憲民主党(重徳派�...

 

 

American dramatist Jo Swerling (April 8, 1897 – October 23, 1964) was an American theatre writer, lyricist and screenwriter. Jo Swerling, circa 1940. Early life and early career Born Joseph Swerling in Berdichev, Ukraine,[1] Swerling was one of a number of Jewish refugees from the Tsarist regime. He grew up on New York City's Lower East Side, where he sold newspapers to help support his family. He worked as a newspaper and magazine writer in the early 1920s. He wrote the Marx Brothe...

 

 

觀塘綫延綫Kwun Tong Line Extension概覽运营範圍 香港油尖旺區、九龍城區服務類型地鐵所屬系統港鐵目前狀況營運中上行總站油麻地下行總站黃埔技術數據路線結構地下路線長度2.6 km(1.6 mi)[2]最高速度最高80公里/小時正線數目2條車站數目新車站2個軌距1435毫米(標準軌)[1]電氣化方式DC 1500 V 高架電纜信號系統GEC Alsthom、西門子 SACEM[註 1]、2020年起�...

この存命人物の記事には検証可能な出典が不足しています。 信頼できる情報源の提供に協力をお願いします。存命人物に関する出典の無い、もしくは不完全な情報に基づいた論争の材料、特に潜在的に中傷・誹謗・名誉毀損あるいは有害となるものはすぐに除去する必要があります。出典検索?: 串田アキラ – ニュース · 書籍 · スカラー · CiNii...

 

 

東映魔女っ子シリーズ 第7作[1] 魔女っ子メグちゃん 1974年4月 - 1975年9月 今作[2] 花の子ルンルン 1979年2月 - 1980年2月 次作[2] 魔法少女ララベル 1980年2月 - 1981年2月 花の子ルンルン アニメ 原作 神保史郎 脚本 城山昇、曽田博久、吉田喜昭 他 キャラクターデザイン 荒木伸吾、姫野美智 音楽 筒井広志 アニメーション制作 東映動画 製作 テレビ朝日、旭通信...