Ekman layer

The Ekman layer is the layer in a fluid where the flow is the result of a balance between pressure gradient, Coriolis and turbulent drag forces. In the picture above, the wind blowing North creates a surface stress and a resulting Ekman spiral is found below it in the column of water.

The Ekman layer is the layer in a fluid where there is a force balance between pressure gradient force, Coriolis force and turbulent drag. It was first described by Vagn Walfrid Ekman. Ekman layers occur both in the atmosphere and in the ocean.

There are two types of Ekman layers. The first type occurs at the surface of the ocean and is forced by surface winds, which act as a drag on the surface of the ocean. The second type occurs at the bottom of the atmosphere and ocean, where frictional forces are associated with flow over rough surfaces.

History

Ekman developed the theory of the Ekman layer after Fridtjof Nansen observed that ice drifts at an angle of 20°–40° to the right of the prevailing wind direction while on an Arctic expedition aboard the Fram. Nansen asked his colleague, Vilhelm Bjerknes to set one of his students upon study of the problem. Bjerknes tapped Ekman, who presented his results in 1902 as his doctoral thesis.[1]

Mathematical formulation

The mathematical formulation of the Ekman layer begins by assuming a neutrally stratified fluid, a balance between the forces of pressure gradient, Coriolis and turbulent drag.

where and are the velocities in the and directions, respectively, is the local Coriolis parameter, and is the diffusive eddy viscosity, which can be derived using mixing length theory. Note that is a modified pressure: we have incorporated the hydrostatic of the pressure, to take account of gravity.

There are many regions where an Ekman layer is theoretically plausible; they include the bottom of the atmosphere, near the surface of the earth and ocean, the bottom of the ocean, near the sea floor and at the top of the ocean, near the air-water interface. Different boundary conditions are appropriate for each of these different situations. Each of these situations can be accounted for through the boundary conditions applied to the resulting system of ordinary differential equations. The separate cases of top and bottom boundary layers are shown below.

Ekman layer at the ocean (or free) surface

We will consider boundary conditions of the Ekman layer in the upper ocean:[2]

where and are the components of the surface stress, , of the wind field or ice layer at the top of the ocean, and is the dynamic viscosity.

For the boundary condition on the other side, as , where and are the geostrophic flows in the and directions.

Solution

Three views of the wind-driven Ekman layer at the surface of the ocean in the Northern Hemisphere. The geostrophic velocity is zero in this example.

These differential equations can be solved to find:

The value is called the Ekman layer depth, and gives an indication of the penetration depth of wind-induced turbulent mixing in the ocean. Note that it varies on two parameters: the turbulent diffusivity , and the latitude, as encapsulated by . For a typical m/s, and at 45° latitude ( s), then is approximately 45 meters. This Ekman depth prediction does not always agree precisely with observations.

This variation of horizontal velocity with depth () is referred to as the Ekman spiral, diagrammed above and at right.

By applying the continuity equation we can have the vertical velocity as following

Note that when vertically-integrated, the volume transport associated with the Ekman spiral is to the right of the wind direction in the Northern Hemisphere.

Ekman layer at the bottom of the ocean and atmosphere

The traditional development of Ekman layers bounded below by a surface utilizes two boundary conditions:

  • A no-slip condition at the surface;
  • The Ekman velocities approaching the geostrophic velocities as goes to infinity.

Experimental observations of the Ekman layer

There is much difficulty associated with observing the Ekman layer for two main reasons: the theory is too simplistic as it assumes a constant eddy viscosity, which Ekman himself anticipated,[3] saying

It is obvious that cannot generally be regarded as a constant when the density of water is not uniform within the region considered

and because it is difficult to design instruments with great enough sensitivity to observe the velocity profile in the ocean.

Laboratory demonstrations

The bottom Ekman layer can readily be observed in a rotating cylindrical tank of water by dropping in dye and changing the rotation rate slightly.[4] Surface Ekman layers can also be observed in rotating tanks.[5]

In the atmosphere

In the atmosphere, the Ekman solution generally overstates the magnitude of the horizontal wind field because it does not account for the velocity shear in the surface layer. Splitting the planetary boundary layer into the surface layer and the Ekman layer generally yields more accurate results.[6]

In the ocean

The Ekman layer, with its distinguishing feature the Ekman spiral, is rarely observed in the ocean. The Ekman layer near the surface of the ocean extends only about 10 – 20 meters deep,[6] and instrumentation sensitive enough to observe a velocity profile in such a shallow depth has only been available since around 1980.[2] Also, wind waves modify the flow near the surface, and make observations close to the surface rather difficult.[7]

Instrumentation

Observations of the Ekman layer have only been possible since the development of robust surface moorings and sensitive current meters. Ekman himself developed a current meter to observe the spiral that bears his name, but was not successful.[8] The Vector Measuring Current Meter [9] and the Acoustic Doppler Current Profiler are both used to measure current.

Observations

The first documented observations of an Ekman-like spiral in the ocean were made in the Arctic Ocean from a drifting ice floe in 1958.[10] More recent observations include (not an exhaustive list):

  • The 1980 mixed layer experiment[11]
  • Within the Sargasso Sea during the 1982 Long Term Upper Ocean Study [12]
  • Within the California Current during the 1993 Eastern Boundary Current experiment [13]
  • Within the Drake Passage region of the Southern Ocean [14]
  • In the eastern tropical Pacific, at 2°N, 140°W, using 5 current meters between 5 and 25 meters depth.[15] This study noted that the geostrophic shear associated with tropical stability waves modified the Ekman spiral relative to what is expected with horizontally uniform density.
  • North of the Kerguelen Plateau during the 2008 SOFINE experiment [16]

Common to several of these observations spirals were found to be "compressed", displaying larger estimates of eddy viscosity when considering the rate of rotation with depth than the eddy viscosity derived from considering the rate of decay of speed.[12][13][14][16]

See also

References

  1. ^ Cushman-Roisin, Benoit (1994). "Chapter 5 – The Ekman Layer". Introduction to Geophysical Fluid Dynamics (1st ed.). Prentice Hall. pp. 76–77. ISBN 978-0-13-353301-9.
  2. ^ a b Vallis, Geoffrey K. (2006). "Chapter 2 – Effects of Rotation and Stratification". Atmospheric and Oceanic Fluid Dynamics (1st ed.). Cambridge, UK: Cambridge University Press. pp. 112–113. ISBN 978-0-521-84969-2.
  3. ^ Ekman, V.W. (1905). "On the influence of the earth's rotation on ocean currents". Ark. Mat. Astron. Fys. 2 (11): 1–52.
  4. ^ [1] Archived 2013-10-22 at the Wayback Machine
  5. ^ [2]
  6. ^ a b Holton, James R. (2004). "Chapter 5 – The Planetary Boundary Layer". Dynamic Meteorology. International Geophysics Series. Vol. 88 (4th ed.). Burlington, MA: Elsevier Academic Press. pp. 129–130. ISBN 978-0-12-354015-7.
  7. ^ Santala, M. J.; Terray, E. A. (1992). "A technique for making unbiased estimates of current shear from a wave-follower". Deep-Sea Research. 39 (3–4): 607–622. Bibcode:1992DSRA...39..607S. doi:10.1016/0198-0149(92)90091-7.
  8. ^ Rudnick, Daniel (2003). "Observations of Momentum Transfer in the Upper Ocean: Did Ekman Get It Right?". Near-Boundary Processes and Their Parameterization. Manoa, Hawaii: School of Ocean and Earth Science and Technology.
  9. ^ Weller, R.A.; Davis, R.E. (1980). "A vector-measuring current meter". Deep-Sea Research. 27 (7): 565–582. Bibcode:1980DSRA...27..565W. doi:10.1016/0198-0149(80)90041-2.
  10. ^ Hunkins, K. (1966). "Ekman drift currents in the Arctic Ocean". Deep-Sea Research. 13 (4): 607–620. Bibcode:1966DSRA...13..607H. doi:10.1016/0011-7471(66)90592-4.
  11. ^ Davis, R.E.; de Szoeke, R.; Niiler., P. (1981). "Part II: Modelling the mixed layer response". Deep-Sea Research. 28 (12): 1453–1475. Bibcode:1981DSRA...28.1453D. doi:10.1016/0198-0149(81)90092-3.
  12. ^ a b Price, J.F.; Weller, R.A.; Schudlich, R.R. (1987). "Wind-Driven Ocean Currents and Ekman Transport". Science. 238 (4833): 1534–1538. Bibcode:1987Sci...238.1534P. doi:10.1126/science.238.4833.1534. PMID 17784291. S2CID 45511024.
  13. ^ a b Chereskin, T.K. (1995). "Direct evidence for an Ekman balance in the California Current". Journal of Geophysical Research. 100 (C9): 18261–18269. Bibcode:1995JGR...10018261C. doi:10.1029/95JC02182.
  14. ^ a b Lenn, Y; Chereskin, T.K. (2009). "Observation of Ekman Currents in the Southern Ocean". Journal of Physical Oceanography. 39 (3): 768–779. Bibcode:2009JPO....39..768L. doi:10.1175/2008jpo3943.1. S2CID 129107187.
  15. ^ Cronin, M.F.; Kessler, W.S. (2009). "Near-Surface Shear Flow in the Tropical Pacific Cold Tongue Front". Journal of Physical Oceanography. 39 (5): 1200–1215. Bibcode:2009JPO....39.1200C. CiteSeerX 10.1.1.517.8028. doi:10.1175/2008JPO4064.1.
  16. ^ a b Roach, C.J.; Phillips, H.E.; Bindoff, N.L.; Rintoul, S.R. (2015). "Detecting and Characterizing Ekman Currents in the Southern Ocean". Journal of Physical Oceanography. 45 (5): 1205–1223. Bibcode:2015JPO....45.1205R. doi:10.1175/JPO-D-14-0115.1.

Read other articles:

At-TajuriLingkunganNegara Arab SaudiProvinsiProvinsi MadinahKotaMadinahZona waktuUTC+3 (EAT) • Musim panas (DST)UTC+3 (EAT) At-Tajuri adalah sebuah lingkungan di kota suci Madinah di Provinsi Madinah, tepatnya di sebelah barat Arab Saudi.[1] Referensi ^ National Geospatial-Intelligence Agency. GeoNames database entry. (search Diarsipkan 2017-03-18 di Wayback Machine.) Accessed 12 May 2011. lbsLingkungan sekitar Masjid Nabawi, Madinah, Arab Saudi • Al-Jumu'ah • -Mu...

 

 

'Gagak api terbang' (shen huo fei ya), bom roket bersayap aerodinamis dari Huolongjing Huolongjing (Hanzi tradisional: 火龍經; Hanzi sederhana: 火龙经; Pinyin: Huǒ Lóng Jīng; Wade-Giles: Huo Lung Ching: Huo Lung Ching ; diterjemahkan dalam bahasa Inggris sebagai Fire Drake Manual atau Fire Dragon Manual), juga dikenal sebagai Huoqitu (gambaran Senjata Api), adalah risalah militer abad 14 yang disusun dan diedit oleh Jiao Yu dan Liu Bowen dari dinasti Ming awal (1368–168...

 

 

Chronologie de la France ◄◄ 1585 1586 1587 1588 1589 1590 1591 1592 1593 ►► Chronologies 1er août : Jacques Clément assassine le roi à coup de couteau.Données clés 1586 1587 1588  1589  1590 1591 1592Décennies :1550 1560 1570  1580  1590 1600 1610Siècles :XIVe XVe  XVIe  XVIIe XVIIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculptur...

2022 single by GloRilla BlessedSingle by GloRillafrom the EP Anyways, Life's Great ReleasedAugust 31, 2022Length3:36LabelCMGInterscopeSongwriter(s)Gloria WoodsMario MimsAntonio Anderson, Jr.Producer(s)Macaroni ToniGloRilla singles chronology Just Say That (Remix) (2022) Blessed (2022) F.N.F. (Let's Go) (Remix) (2022) Yo Gotti singles chronology Big League(2022) Blessed(2022) Brown Liquor(2022) Music videoBlessed on YouTube Blessed is a song by American rapper GloRilla, released on Aug...

 

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Nyoman Rudana – berita · surat kabar · buku · cendekiawan · JSTOR Nyoman Rudana - Juni 2008 Nyoman Rudana (lahir 17 September 1948) adalah seorang kolektor seni, wirausahawan, dan anggota Dewan Perwakilan Dae...

 

 

Pour les articles homonymes, voir George Washington (homonymie) et Lafayette. Georges Washington de La Fayette Georges Washington de La Fayette à onze ans, peint sur Le serment de La Fayette à la fête de la Fédération (14 juillet 1790).(musée de la Révolution française) Fonctions Député 1815, 1827-1848 Groupe politique Libéral (1815)Aide-toi, le ciel t'aidera (1827-1830)Gauche (1830)Républicain (1831-1848) Biographie Date de naissance 24 décembre 1779 à Paris, Royaume de France...

Miguel Layún Layún con la maglia del Messico nel 2017. Nazionalità  Messico Altezza 178 cm Peso 69 kg Calcio Ruolo Difensore, centrocampista Termine carriera 2024 CarrieraGiovanili 2003-2006 VeracruzSquadre di club1 2006-2009 Veracruz58 (1)2009-2010 Atalanta2 (0)2010-2015 América111 (13)[1]2015 Watford20 (1)2015-2018 Porto50 (6)2018→  Siviglia16 (2)2018-2019 Villarreal8 (0)2019-2021 Monterrey73 (3)2021-2024 América68 (1)Na...

 

 

His Excellency赫瓦贾·纳齐姆丁爵士খাজা নাজিমুদ্দীন خواجہ ناظِمُ الدّین‬‎CIE, KCIE摄于1948年第2任巴基斯坦總理任期1951年10月17日—1953年4月17日君主佐治六世伊莉沙白二世总督古拉姆·穆罕默德前任利雅卡特·阿里·汗继任Mohammad Ali Bogra(英语:Mohammad Ali Bogra)第2任巴基斯坦總督(英语:Governor-General of Pakistan)任期1948年9月14日—1951年10月17日君�...

 

 

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

 

 

カナダの政治家サー・ウィルフリッド・ローリエSir Wilfrid Laurier 生年月日 1841年11月20日出生地 カナダ、ケベック州サン・ラン没年月日 (1919-02-17) 1919年2月17日(77歳没)所属政党 自由党サイン 第8代首相在任期間 1896年7月11日 - 1911年10月5日テンプレートを表示 サー・ウィルフリッド・ローリエ(Sir Wilfrid Laurier フランス語: [wilfʁid loʁje] 英語: [ˈlɒrieɪ]、1841年11月20�...

 

 

American baseball player (born 1990) Baseball player Zack WheelerWheeler with the Philadelphia Phillies in 2022Philadelphia Phillies – No. 45Starting pitcherBorn: (1990-05-30) May 30, 1990 (age 34)Smyrna, Georgia, U.S.Bats: LeftThrows: RightMLB debutJune 18, 2013, for the New York MetsMLB statistics (through June 3, 2024)Win–loss record94–66Earned run average3.38Strikeouts1,492 Teams New York Mets (2013–2014, 2017–2019) Philadelphia Phillies (2020–present) Care...

У этого термина существуют и другие значения, см. Волхов (значения). ГородВолхов Флаг Герб 59°54′02″ с. ш. 32°21′10″ в. д.HGЯO Страна  Россия Субъект Федерации Ленинградская область Муниципальный район Волховский Городское поселение город Волхов Глава МО Арутюнян ...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) كأس أمريكا الجنوبية 1967معلومات عامةموسم لـ كوبا أمريكا الرياضة كرة القدم البلد الأوروغواي المكان ملعب سنتي...

 

 

У Вікіпедії є статті про інші значення цього терміна: Ягода (значення). Чотири типи дійсних ягід; за годинниковою стрілкою справа: виноград, хурма, аґрус, порічки (верх). Кілька типів «ягід» у звичайному розумінні, жодна з яких не є ягодою з ботанічної точки зору; згори дон...

Untuk radikal Italia bernama sama, lihat Gregorio Fontana (radikal). Gregorio FontanaLahir(1735-12-07)7 Desember 1735Nogaredo, ItaliaMeninggal24 Agustus 1803(1803-08-24) (umur 67)Milan, ItaliaKebangsaanItaliaDikenal ataskoordinat kutubKarier ilmiahBidangGeometriMahasiswa ternamaPietro Paoli Gregorio Fontana, bernama lahir Giovanni Battista Lorenzo Fontana (7 Desember 1735 – 24 Agustus 1803) adalah seorang matematikawan dan anggota keagamaan ordo Piaris asal Italia. Ia men...

 

 

Article principal : Aviron aux Jeux olympiques d'été de 2016. Deux sans barreur féminin(W2-)aux Jeux olympiquesd'été de 2016 Généralités Sport Aviron Organisateur(s) CIO Éditions 27e Lieu(x) Rio de Janeiro Date du 7 août 2016 au 12 août 2016 Nations 15 Participants 30 Site(s) Lagoa Rodrigo de Freitas Palmarès Tenant du titre Glover / Stanning Vainqueur Glover / Stanning Deuxième Behrent / Scown Troisième Rasmussen / Andersen Navigation Londres 2012 Tokyo 2020 modifier L'ép...

 

 

County Jefferson, WisconsinJefferson County courthouseMap of Wisconsin highlighting County JeffersonLokasi di negara bagian WisconsinLokasi negara bagian Wisconsin di Amerika SerikatDidirikan1839Asal namaThomas JeffersonSeatJeffersonKota terbesarWatertownWilayah • Keseluruhan583 sq mi (1.510 km2) • Daratan556 sq mi (1.440 km2) • Perairan26 sq mi (67 km2), 4.5Distrik kongreske-5Zona waktuTengahSitus webwww.jeffers...

فورغ فورگ  - قرية -    تقسيم إداري البلد  إيران[1] المحافظة خراسان الجنوبية المقاطعة مقاطعة درميان الناحية الناحية المركزية القسم الريفي قسم درمیان الريفي خصائص جغرافية إحداثيات 32°50′42″N 59°56′59″E / 32.845°N 59.94972°E / 32.845; 59.94972 الارتفاع 1789 متر[2]...

 

 

Error in statistical reasoning with groups Simpson's paradox for quantitative data: a positive trend ( ,  ) appears for two separate groups, whereas a negative trend ( ) appears when the groups are combined. Visualization of Simpson's paradox on data resembling real-world variability indicates that risk of misjudgment of true causal relationship can be hard to spot. Simpson's paradox is a phenomenon in probability and statistics in which a trend appears in several groups of dat...