Stokes problem

Stokes problem in a viscous fluid due to the harmonic oscillation of a plane rigid plate (bottom black edge). Velocity (blue line) and particle excursion (red dots) as a function of the distance to the wall.

In fluid dynamics, Stokes problem also known as Stokes second problem or sometimes referred to as Stokes boundary layer or Oscillating boundary layer is a problem of determining the flow created by an oscillating solid surface, named after Sir George Stokes. This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations.[1][2] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.

Flow description[3][4]

Consider an infinitely long plate which is oscillating with a velocity in the direction, which is located at in an infinite domain of fluid, where is the frequency of the oscillations. The incompressible Navier–Stokes equations reduce to

where is the kinematic viscosity. The pressure gradient does not enter into the problem. The initial, no-slip condition on the wall is

and the second boundary condition is due to the fact that the motion at is not felt at infinity. The flow is only due to the motion of the plate, there is no imposed pressure gradient.

Solution[5][6]

The initial condition is not required because of periodicity. Since both the equation and the boundary conditions are linear, the velocity can be written as the real part of some complex function

because .

Substituting this into the partial differential equation reduces it to ordinary differential equation

with boundary conditions

The solution to the above problem is

The disturbance created by the oscillating plate travels as the transverse wave through the fluid, but it is highly damped by the exponential factor. The depth of penetration of this wave decreases with the frequency of the oscillation, but increases with the kinematic viscosity of the fluid.

The force per unit area exerted on the plate by the fluid is

There is a phase shift between the oscillation of the plate and the force created.

Vorticity oscillations near the boundary

An important observation from Stokes' solution for the oscillating Stokes flow is that vorticity oscillations are confined to a thin boundary layer and damp exponentially when moving away from the wall.[7] This observation is also valid for the case of a turbulent boundary layer. Outside the Stokes boundary layer – which is often the bulk of the fluid volume – the vorticity oscillations may be neglected. To good approximation, the flow velocity oscillations are irrotational outside the boundary layer, and potential flow theory can be applied to the oscillatory part of the motion. This significantly simplifies the solution of these flow problems, and is often applied in the irrotational flow regions of sound waves and water waves.

Fluid bounded by an upper wall

If the fluid domain is bounded by an upper, stationary wall, located at a height , the flow velocity is given by

where .

Fluid bounded by a free surface

Suppose the extent of the fluid domain be with representing a free surface. Then the solution as shown by Chia-Shun Yih in 1968[8] is given by

where

Flow due to an oscillating pressure gradient near a plane rigid plate

Stokes boundary layer due to the sinusoidal oscillation of the far-field flow velocity. The horizontal velocity is the blue line, and the corresponding horizontal particle excursions are the red dots.

The case for an oscillating far-field flow, with the plate held at rest, can easily be constructed from the previous solution for an oscillating plate by using linear superposition of solutions. Consider a uniform velocity oscillation far away from the plate and a vanishing velocity at the plate . Unlike the stationary fluid in the original problem, the pressure gradient here at infinity must be a harmonic function of time. The solution is then given by

which is zero at the wall y = 0, corresponding with the no-slip condition for a wall at rest. This situation is often encountered in sound waves near a solid wall, or for the fluid motion near the sea bed in water waves. The vorticity, for the oscillating flow near a wall at rest, is equal to the vorticity in case of an oscillating plate but of opposite sign.

Stokes problem in cylindrical geometry

Torsional oscillation

Consider an infinitely long cylinder of radius exhibiting torsional oscillation with angular velocity where is the frequency. Then the velocity approaches after the initial transient phase to[9]

where is the modified Bessel function of the second kind. This solution can be expressed with real argument[10] as:

where

and are Kelvin functions and is to the dimensionless oscillatory Reynolds number defined as , being the kinematic viscosity.

Axial oscillation

If the cylinder oscillates in the axial direction with velocity , then the velocity field is

where is the modified Bessel function of the second kind.

Stokes–Couette flow[11]

In the Couette flow, instead of the translational motion of one of the plate, an oscillation of one plane will be executed. If we have a bottom wall at rest at and the upper wall at is executing an oscillatory motion with velocity , then the velocity field is given by

The frictional force per unit area on the moving plane is and on the fixed plane is .

See also

References

  1. ^ Wang, C. Y. (1991). "Exact solutions of the steady-state Navier-Stokes equations". Annual Review of Fluid Mechanics. 23: 159–177. Bibcode:1991AnRFM..23..159W. doi:10.1146/annurev.fl.23.010191.001111.
  2. ^ Landau & Lifshitz (1987), pp. 83–85.
  3. ^ Batchelor, George Keith. An introduction to fluid dynamics. Cambridge university press, 2000.
  4. ^ Lagerstrom, Paco Axel. Laminar flow theory. Princeton University Press, 1996.
  5. ^ Acheson, David J. Elementary fluid dynamics. Oxford University Press, 1990.
  6. ^ Landau, Lev Davidovich, and Evgenii Mikhailovich Lifshitz. "Fluid mechanics." (1987).
  7. ^ Phillips (1977), p. 46.
  8. ^ Yih, C. S. (1968). Instability of unsteady flows or configurations Part 1. Instability of a horizontal liquid layer on an oscillating plane. Journal of Fluid Mechanics, 31(4), 737-751.
  9. ^ Drazin, Philip G., and Norman Riley. The Navier–Stokes equations: a classification of flows and exact solutions. No. 334. Cambridge University Press, 2006.
  10. ^ Rivero, M.; Garzón, F.; Núñez, J.; Figueroa, A. (2019). "Study of the flow induced by circular cylinder performing torsional oscillation". European Journal of Mechanics - B/Fluids. 78: 245–251. Bibcode:2019EuJMB..78..245R. doi:10.1016/j.euromechflu.2019.08.002. S2CID 201253195.
  11. ^ Landau, L. D., & Sykes, J. B. (1987). Fluid Mechanics: Vol 6. pp. 88

Read other articles:

Penjara Megiddo dari puncak Tel Megiddo. Gereja terletak di halaman penjara. Gereja Megiddo kuno di dekat Tel Megiddo, Israel adalah sebuah situs arkeologi yang menyajikan fondasi salah satu bangunan gereja tertua yang pernah ditemukan oleh para arkeolog, tertanggal dari abad ke-3 M.[1] Lokasi Reruntuhan ditemukan di dekat Penjara Megiddo, yang berjarak beberapa ratus meter dari selatan tell dan berdekatan dengan Persimpangan Megiddo di utara Israel. Kawasan tersebut masuk wilayah kot...

 

GURPS Goblins is a supplement published by Steve Jackson Games in 1996 for the third edition of GURPS (Generic Universal Role-PLaying System). Contents GURPS Goblins enables players to create and play goblin characters in an alternate world populated by goblins, set in Georgian England.[1] The book is divided into nine chapters that cover all aspects of goblin society in 1830, from laws and punishments to diseases and medicines.[2] Four short scenarios are also included.[...

 

Тактический знак НАТО для обозначения военно-медицинских формирований на карте. Иллюстрация, показывающая многообразие ранений из книги Feldbuch der Wundarznei (Полевое руководство по обработке ран) Ганса фон Герсдорфа (Hans von Gersdorff), (1517).Военнослужащие медицинской службы Русской а...

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

 

American country singer Martina McBrideMcBride performing live in June 2010Background informationBirth nameMartina Mariea SchiffBorn (1966-07-29) July 29, 1966 (age 57)Sharon, Kansas, U.S.OriginNashville, Tennessee, U.S.Genres Country country pop Occupation(s)Singersongwriterrecord producerInstrument(s) Vocals piano tambourine harmonica Years active1988–presentLabels RCA Republic Nashville Kobalt NASH Icon[1] Broken Bow Spouse(s) John McBride ​(m. 1988)&#...

 

2008 Africa Cup of NationsMTN Africa Cup of Nations Ghana 2008Africa Cup of Nations 2008 official logoTournament detailsHost countryGhanaDates20 January – 10 FebruaryTeams16Venue(s)4 (in 4 host cities)Final positionsChampions Egypt (6th title)Runners-up CameroonThird place GhanaFourth place Ivory CoastTournament statisticsMatches played32Goals scored99 (3.09 per match)Attendance714,000 (22,313 per match)Top scorer(s) Samuel Eto'o (5 goals)Best player...

Disambiguazione – Se stai cercando altri significati, vedi Berru (disambigua). Questa voce sull'argomento centri abitati del Grand Est è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. BerrucomuneBerru – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementReims CantoneBourgogne TerritorioCoordinate49°16′N 4°09′E / 49.266667°N 4.15°E49.266667; 4.15 (Berru)Coordinate: 49°16′N 4°0...

 

«All'inizio e alla fine abbiamo il mistero. Potremmo dire che abbiamo il disegno di Dio. A questo mistero la matematica ci avvicina, senza penetrarlo.» (Ennio De Giorgi) Premio Wolf per la matematica 1990 Premio Caccioppoli 1960 Ennio De Giorgi (Lecce, 8 febbraio 1928 – Pisa, 25 ottobre 1996) è stato un matematico italiano. Indice 1 Biografia 2 Alcune opere 3 Note 4 Bibliografia 5 Altri progetti 6 Collegamenti esterni Biografia Nipote di Cosimo De Giorgi, rimase orfano di padre a 2 anni...

 

Not to be confused with Five Ten Footwear. Political party in Ukraine 5.10 LeaderHennadiy BalashovFounded20 March 2014[1]HeadquartersKyivMembership1,500IdeologyLibertarianismMinarchism[2]Political positionRight-wingSloganState, get out of the economy![3]Seats in Verkhovna Rada0 / 450Party flagWebsite510.uaPolitics of UkrainePolitical partiesElections Ukraine, Kiev city, party office 5.10 September 2021.Freedom for Gennady Balashov. 5.10 is a Ukrainian politica...

Pozzol GroppoKomuneComune di Pozzol GroppoNegaraItaliaWilayahPiedmontProvinsiProvinsi Alessandria (AL)FrazioniSan Lorenzo, BigiascoLuas • Total13,9 km2 (54 sq mi)Ketinggian200 m (700 ft)Populasi (Dec. 2004) • Total394 • Kepadatan2,8/km2 (7,3/sq mi)DemonimPozzolgroppesiZona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos15050Kode area telepon0131 Pozzol Groppo adalah komune yang terletak di distrik Prov...

 

自公連立政權领袖岸田文雄意識形態自由保守主義保守自由主義政治立場中间偏右至右翼成员自由民主党公明黨參議院146 / 248 (59%) 眾議院295 / 465 (63%) 日本政治政党 · 选举 日本政治 政治 民主制 议会内阁制 象征天皇制 单一制 法律 法治国家 日本国宪法 日本的法律 公民 选举 国政选举(小选举区比例代表并立制) 众议院议员总选举 参议院议员通常选举 地方�...

 

Monitoring of substances in a workplace that are chemical or biological hazards Workplace exposure monitoring is the monitoring of substances in a workplace that are chemical or biological hazards. It is performed in the context of workplace exposure assessment and risk assessment. Exposure monitoring analyzes hazardous substances in the air or on surfaces of a workplace, and is complementary to biomonitoring, which instead analyzes toxicants or their effects within workers. A wide array of m...

British coachbuilder and bus manufacturer A Park Royal bodied Leyland Titan (B15). Park Royal Vehicles was one of Britain's leading coachbuilders and bus manufacturers, based at Park Royal, Abbey Road, in west London. With origins dating back to 1889, the company also had a Leeds-based subsidiary, Charles H. Roe. Labour problems and slowness of production led to its closure in 1980.[1] Associated Commercial Vehicles Associated with AEC from the 1930s[1] in 1949 it became part ...

 

بوابة الإمبراطورية الرومانية المقدسة أرشيف الأباطرة طالع صفحة التصنيفات طالع صفحة الأرشيف طالع صفحة البناء طالع صفحة البوابات حدّث محتوى الصفحة الأباطرة شخصية مختارة دول الإمبراطورية مدينة مختارة أحداث الحروب والمعارك ⬆️⬇️ رجوع 1  ع - ن - ت ⇧  ⇩ أوتو الأول (بالألم�...

 

Michiel de Ruyter Michiel Adriaenszoon de Ruyter (Vlissingen, 24 Maret 1607 – Teluk Siracusa, 29 April 1676) ialah seorang laksamana Belanda terkenal dan salah satu Laksamana yang paling terlatih dalam sejarah Belanda, kisahnya yang terkenal adalah ketika Perang Anglo-Belanda (Perang Inggris-Belanda) pada abad ke 17. de Ruyter berperang melawan Inggris dan Prancis dan meraih beberapa kemenangan besar. Kemenangan besar yang paling dikenal adalah Penyerangan di Medway. De ruyter yang saleh sa...

John Amos Comenius (1592–1670) John Amos Comenius (bahasa Ceko: Jan Ámos Komenský; bahasa Slowakia: Ján Amos Komenský; bahasa Jerman: Johann mos Comenius; bahasa Polandia: Jan Amos Komeński; bahasa Latin: Iohannes Amos Comenius; 28 Maret 1592 – 15 November 1670) adalah seorang guru, ilmuwan pendidik dan penulis Ceko. Sumbangan Comenius begitu berbobot, sehingga di kemudian hari ia menerima gelar kehormatan Bapa Pendidikan Modern.[1] Sebagai seorang guru, John Co...

 

For related races, see 1896 United States gubernatorial elections. 1896 Montana gubernatorial election ← 1892 November 3, 1896 1900 →   Nominee Robert Burns Smith Alexander C. Botkin Party Democratic Republican Alliance Populist Silver Republican Popular vote 36,688 14,993 Percentage 70.99% 29.01% County resultsSmith:      50–60%      60–70%      70–80%     ...

 

Pour les articles homonymes, voir Tronc. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (décembre 2020). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique...

Perlindungan dari anon Asa AkiraAkira pada Januari 2014Lahir3 Januari 1986 (umur 38)[1]Manhattan, New York, A.S[2]Tinggi5 ft 2 in (1,57 m)[3][4]Suami/istriToni Ribas ​ ​(m. 2012; c. 2017)​Anak1Situs webasaakira.com Asa Akira (lahir 3 Januari 1986)[1] adalah seorang aktris pornografi serta sutradara film porno.[3] Akira telah muncul di lebih dari 505 film dewasa pada Mei 2016. P...

 

River in Quebec, CanadaOskélanéoMap of Saint-Maurice River watershedLocationCountryCanadaProvinceQuebecRegionMauriciePhysical characteristicsSourceOskélanéo Lake • locationLa Tuque (Faucher Township), Mauricie, Quebec • coordinates48°10′36″N 74°08′51″W / 48.17667°N 74.14750°W / 48.17667; -74.14750 • elevation404 m (1,325 ft) MouthBureau Lake (South Bay) • locationLa Tuque (A...