Technique used to measure temperatures and currents over large regions of the ocean
Ocean acoustic tomography is a technique used to measure temperatures and currents over large regions of the ocean.[1][2] On ocean basin scales, this technique is also known as acoustic thermometry. The technique relies on precisely measuring the time it takes sound signals to travel between two instruments, one an acoustic source and one a receiver, separated by ranges of 100–5,000 kilometres (54–2,700 nmi). If the locations of the instruments are known precisely, the measurement of time-of-flight can be used to infer the speed of sound, averaged over the acoustic path. Changes in the speed of sound are primarily caused by changes in the temperature of the ocean, hence the measurement of the travel times is equivalent to a measurement of temperature. A 1 °C (1.8 °F) change in temperature corresponds to about 4 metres per second (13 ft/s) change in sound speed. An oceanographic experiment employing tomography typically uses several source-receiver pairs in a moored array that measures an area of ocean.
Motivation
Seawater is an electrical conductor, so the oceans are opaque to electromagnetic energy (e.g., light or radar). The oceans are fairly transparent to low-frequency acoustics, however. The oceans conduct sound very efficiently, particularly sound at low frequencies, i.e., less than a few hundred hertz.[3] These properties motivated Walter Munk and Carl Wunsch[4][5] to suggest "acoustic tomography" for ocean measurement in the late 1970s. The advantages of the acoustical approach to measuring temperature are twofold. First, large areas of the ocean's interior can be measured by remote sensing. Second, the technique naturally averages over the small scale fluctuations of temperature (i.e., noise) that dominate ocean variability.
From its beginning, the idea of observations of the ocean by acoustics was married to estimation of the ocean's state using modern numerical ocean models and the techniques assimilating data into numerical models. As the observational technique has matured, so too have the methods of data assimilation and the computing power required to perform those calculations.
Multipath arrivals and tomography
One of the intriguing aspects of tomography is that it exploits the fact that acoustic signals travel along a set of generally stable ray paths. From a single transmitted acoustic signal, this set of rays gives rise to multiple arrivals at the receiver, the travel time of each arrival corresponding to a particular ray path. The earliest arrivals correspond to the deeper-traveling rays, since these rays travel where sound speed is greatest. The ray paths are easily calculated using computers ("ray tracing"), and each ray path can generally be identified with a particular travel time. The multiple travel times measure the sound speed averaged over each of the multiple acoustic paths. These measurements make it possible to infer aspects of the structure of temperature or current variations as a function of depth. The solution for sound speed, hence temperature, from the acoustic travel times is an inverse problem.
The integrating property of long-range acoustic measurements
Ocean acoustic tomography integrates temperature variations over large distances, that is, the measured travel times result from the accumulated effects of all the temperature variations along the acoustic path, hence measurements by the technique are inherently averaging. This is an important, unique property, since the ubiquitous small-scale turbulent and internal-wave features of the ocean usually dominate the signals in measurements at single points. For example, measurements by thermometers (i.e., moored thermistors or Argo drifting floats) have to contend with this 1-2 °C noise, so that large numbers of instruments are required to obtain an accurate measure of average temperature. For measuring the average temperature of ocean basins, therefore, the acoustic measurement is quite cost effective. Tomographic measurements also average variability over depth as well, since the ray paths cycle throughout the water column.
Reciprocal tomography
"Reciprocal tomography" employs the simultaneous transmissions between two acoustic transceivers. A "transceiver" is an instrument incorporating both an acoustic source and a receiver. The slight differences in travel time between the reciprocally-traveling signals are used to measure ocean currents, since the reciprocal signals travel with and against the current. The average of these reciprocal travel times is the measure of temperature, with the small effects from ocean currents entirely removed. Ocean temperatures are inferred from the sum of reciprocal travel times, while the currents are inferred from the difference of reciprocal travel times. Generally, ocean currents (typically 10 cm/s (3.9 in/s)) have a much smaller effect on travel times than sound speed variations (typically 5 m/s (16 ft/s)), so "one-way" tomography measures temperature to good approximation.
Applications
In the ocean, large-scale temperature changes can occur over time intervals from minutes (internal waves) to decades (oceanic climate change). Tomography has been employed to measure variability over this wide range of temporal scales and over a wide range of spatial scales. Indeed, tomography has been contemplated as a measurement of ocean climate using transmissions over antipodal distances.[3]
Tomography has come to be a valuable method of ocean observation,[6] exploiting the characteristics of long-range acoustic propagation to obtain synoptic measurements of average ocean temperature or current. One of the earliest applications of tomography in ocean observation occurred in 1988-9. A collaboration between groups at the Scripps Institution of Oceanography and the Woods Hole Oceanographic Institution deployed a six-element tomographic array in the abyssal plain of the Greenland Seagyre to study deep water formation and the gyre circulation.[7][8] Other applications include the measurement of ocean tides,[9][10]
and the estimation of ocean mesoscale dynamics by combining tomography, satellite altimetry, and
in situ data with ocean dynamical models.[11]
In addition to the decade-long measurements obtained in the North Pacific, acoustic thermometry has been employed to measure temperature changes of the upper layers of the Arctic Ocean basins,[12] which continues to be an area of active interest.[13] Acoustic thermometry was also recently been used to determine changes to global-scale ocean temperatures using data from acoustic pulses sent from one end of the Earth to the other.[14][15]
Acoustic thermometry
Acoustic thermometry is an idea to observe the world's ocean basins, and the ocean climate in particular, using trans-basinacoustictransmissions. "Thermometry", rather than "tomography", has been used to indicate basin-scale or global scale measurements. Prototype measurements of temperature have been made in the North Pacific Basin and across the Arctic Basin.[1]
Starting in 1983, John Spiesberger of the Woods Hole Oceanographic Institution, and Ted Birdsall and Kurt Metzger of the University of Michigan developed the use of sound to infer information about the ocean's large-scale temperatures, and in particular to attempt the detection of global warming in the ocean. This group transmitted sounds from Oahu that were recorded at about ten receivers stationed around the rim of the Pacific Ocean over distances of 4,000 km (2,500 mi).[16][17]
These experiments demonstrated that changes in temperature could be measured with an accuracy of about 20 millidegrees. Spiesberger et al. did not detect global warming. Instead they discovered that other natural climatic fluctuations, such as El Nino, were responsible in part
for substantial fluctuations in temperature that may have masked any slower and smaller trends that may have occurred from global warming.[18]
The Acoustic Thermometry of Ocean Climate (ATOC) program was implemented in the North Pacific Ocean, with acoustic transmissions from 1996 through fall 2006. The measurements terminated when agreed-upon environmental protocols ended. The decade-long deployment of the acoustic source showed that the observations are sustainable on even a modest budget. The transmissions have been verified to provide an accurate measurement of ocean temperature on the acoustic paths, with uncertainties that are far smaller than any other approach to ocean temperature measurement.[19][20]
Repeating earthquakes acting as naturally-occurring acoustic sources have also been used in acoustic thermometry, which may be particularly useful for inferring temperature variability in the deep ocean which is presently poorly sampled by in-situ instruments.[21]
The ATOC project was embroiled in issues concerning the effects of acoustics on marine mammals (e.g. whales, porpoises, sea lions, etc.).[22][23][24] Public discussion was complicated by technical issues from a variety of disciplines (physical oceanography, acoustics, marine mammal biology, etc.) that makes understanding the effects of acoustics on marine mammals difficult for the experts, let alone the general public. Many of the issues concerning acoustics in the ocean and their effects on marine mammals were unknown. Finally, there were a variety of public misconceptions initially, such as a confusion of the definition of sound levels in air vs. sound levels in water. If a given number of decibels in water are interpreted as decibels in air, the sound level will seem to be orders of magnitude larger than it really is - at one point the ATOC sound levels were erroneously interpreted as so loud the signals would kill 500,000 animals.[25][5] The sound power employed, 250 W, was comparable those made by blue or fin whales,[24] although those whales vocalize at much lower frequencies. The ocean carries sound so efficiently that sounds do not have to be that loud to cross ocean basins. Other factors in the controversy were the extensive history of activism where marine mammals are concerned, stemming from the ongoing whaling conflict, and the sympathy that much of the public feels toward marine mammals.[25]
As a result of this controversy, the ATOC program conducted a $6 million study of the effects of the acoustic transmissions on a variety of marine mammals. The acoustic source was mounted on the bottom about a half mile deep, hence marine mammals, which are bound to the surface, were generally further than a half mile from the source. The source level was modest, less than the sound level of large whales, and the duty cycle was 2% (i.e., the sound is on only 2% of the day).[26] After six years of study the official, formal conclusion from this study was that the ATOC transmissions have "no biologically significant effects".[24][27][28]
Other acoustics activities in the ocean may not be so benign insofar as marine mammals are concerned. Various types of man-made sounds have been studied as potential threats to marine mammals, such as airgun shots for geophysical surveys,[29] or transmissions by the U.S. Navy for various purposes.[30] The actual threat depends on a variety of factors beyond noise levels: sound frequency, frequency and duration of transmissions, the nature of the acoustic signal (e.g., a sudden pulse, or coded sequence), depth of the sound source, directionality of the sound source, water depth and local topography, reverberation, etc.
Types of transmitted acoustic signals
Tomographic transmissions consist of long coded signals (e.g., "m-sequences") lasting 30 seconds or more. The frequencies employed range from 50 to 1000 Hz and source powers range from 100 to 250 W, depending on the particular goals of the measurements. With precise timing such as from GPS, travel times can be measured to a nominal accuracy of 1 millisecond. While these transmissions are audible near the source, beyond a range of several kilometers the signals are usually below ambient noise levels, requiring sophisticated spread-spectrumsignal processing techniques to recover them.
^ abMunk, Walter (2006). "Ocean Acoustic Tomography; from a stormy start to an uncertain future". In Jochum, Markus; Murtugudde, Raghu (eds.). Physical Oceanography: Developments Since 1950. New York: Springer. pp. 119–136. ISBN9780387331522.
^Pawlowicz, R.; et al. (1995-03-15). "Thermal evolution of the Greenland Sea gyre in 1988-1989". Vol. 100. Journal of Geophysical Research. pp. 4727–2750.
^Morawitz, W. M. L.; et al. (1996). "Three-dimensional observations of a deep convective chimney in the Greenland Sea during winter 1988/1989". Vol. 26. Journal of Physical Oceanography. pp. 2316–2343.
^Lebedev, K.V.; Yaremchuck, M.; Mitsudera, H.; Nakano, I.; Yuan, G. (2003). "Monitoring the Kuroshio Extension through dynamically constrained synthesis of the acoustic tomography, satellite altimeter and in situ data". Journal of Physical Oceanography. 59 (6): 751–763. doi:10.1023/b:joce.0000009568.06949.c5. S2CID73574827.
^Spiesberger, J.L.; K. Metzger (1991). "Basin-scale tomography: A new tool for studying weather and climate". J. Geophys. Res. 96 (C3): 4869–4889. Bibcode:1991JGR....96.4869S. doi:10.1029/90JC02538.
^Spiesberger, John; Harley Hurlburt; Mark Johnson; Mark Keller; Steven Meyers; and J.J. O'Brien (1998). "Acoustic thermometry data compared with two ocean models: The importance of Rossby waves and ENSO in modifying the ocean interior". Dynamics of Atmospheres and Oceans. 26 (4): 209–240. Bibcode:1998DyAtO..26..209S. doi:10.1016/s0377-0265(97)00044-4.
^Dushaw, Brian; et al. (2009-07-19). "A decade of acoustic thermometry in the North Pacific Ocean". Journal of Geophysical Research. Vol. 114, C07021. J. Geophys. Res. Bibcode:2009JGRC..114.7021D. doi:10.1029/2008JC005124.
B. D. Dushaw, 2013. "Ocean Acoustic Tomography" in Encyclopedia of Remote Sensing, E. G. Njoku, Ed., Springer, Springer-Verlag Berlin Heidelberg, 2013. ISBN978-0-387-36698-2.
W. Munk, P. Worcester, and C. Wunsch (1995). Ocean Acoustic Tomography. Cambridge: Cambridge University Press. ISBN0-521-47095-1.
P. F. Worcester, 2001: "Tomography," in Encyclopedia of Ocean Sciences, J. Steele, S. Thorpe, and K. Turekian, Eds., Academic Press Ltd., 2969–2986.
Artikel ini sudah memiliki daftar referensi, bacaan terkait, atau pranala luar, tetapi sumbernya belum jelas karena belum menyertakan kutipan pada kalimat. Mohon tingkatkan kualitas artikel ini dengan memasukkan rujukan yang lebih mendetail bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Candi Pringapus Arca Nandi dalam bilik candi. Candi Pringapus adalah candi di desa Pringapus, Ngadirejo, Temanggung 22 Km arah barat laut ibu kota kabupaten Temanggung. Arca-ar...
Katedral MacerataKatedral Santo YulianusItalia: Cattedrale di S. Giulianocode: it is deprecated Katedral MacerataLokasiMacerataNegaraItaliaDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Macerata-Tolentino-Recanati-Cingoli-Treia Katedral Macerata (Italia: Cattedrale di Macerata; Duomo di Macerata; Cattedrale di San Giulianocode: it is deprecated ) adalah sebuah gereja katedral Katolik yang terletak di kota Macerata, provinsi Macerata, ...
Education organization in Colorado, United States Otero CollegeFormer nameLa Junta Junior College (1941–1949) Otero County Junior College (1949–1956) Otero Junior College (1956–2021)MottoWe're Focused on Your Future!TypePublic community collegeEstablished1941Parent institutionColorado Community College SystemAcademic affiliationSpace-grantPresidentTimothy A. AlvarezLocationLa Junta, Colorado, United States37°58′18″N 103°32′43″W / 37.97160°N 103.54538°W...
Tombereau hippomobile. Tombereau désigne des engins de transport et manutention et dont l'utilisation est ancienne. Il peut concerner : des véhicules, généralement agricoles ou de chantier, destinés à transporter des matériaux. Il est plus spécialement adapté au transport et déchargement rapide du vrac. Sa particularité est que la caisse peut basculer pour vider le chargement. De là vient le nom, du verbe tomber, au sens ancien de basculer. Les tombereaux pouvaient être, sui...
Provincial park in Ontario, Canada Murphys Point Provincial ParkIUCN category II (national park)Bunkhouse, Silver Queen MineLocationTay Valley, OntarioNearest cityPerth, OntarioCoordinates44°46′N 76°13′W / 44.767°N 76.217°W / 44.767; -76.217Area1,238.78 ha (4.7830 sq mi)[1]DesignationNatural environmentEstablished1967[2]Governing bodyOntario Parkswww.ontarioparks.com/park/murphyspoint Murphys Point Provincial Park is a p...
Federasi Sepak Bola DjiboutiCAFDidirikan1979Bergabung dengan FIFA1994Bergabung dengan CAF1994PresidenHoussein FadoulWebsitehttp://www.fdf.dj/ Federasi Sepak Bola Djibouti (Prancis: Fédération Djiboutienne de Football (FDF)) adalah badan pengendali sepak bola di Djibouti. Kompetisi Badan ini menyelenggarakan beberapa kompetisi di Djibouti, yakni: Liga Utama Djibouti Piala Djibouti Tim nasional Badan ini juga merupakan badan pengendali dari tim nasional pria Djibouti. Pranala luar (Inggri...
EzekielEzekiel e l'Uomo Ragno sulla copertina de L'Uomo Ragno n.344 UniversoUniverso Marvel Nome orig.Ezekiel AutoriJ. Michael Straczynski John Romita, Jr. EditoreMarvel Comics 1ª app.giugno 2001 1ª app. inAmazing Spider-Man (vol.2) n.30 Interpretato daTahar Rahim Voce italianaRaffaele Carpentieri Caratteristiche immaginarieAlter egoEzekiel Sims Poteri capacità di aderire ad ogni superficie forza, agilità e resistenza ed equilibrio sovrumani senso di ragno Ezekiel Zeke Sims ...
Taka beralih ke halaman ini. Untuk the Japanese given name, lihat Taka (given name). Untuk the Filipino paper mache, lihat Taka (paper mache). Untuk other uses, lihat Taka (disambiguasi). Taka Bangladesh Uang kertas TakaTanda mata uang ISO 4217KodeBDTDenominasiSubsatuan 1⁄100Poisha(ditutup)Simbol৳ PoishapUang kertas Sering digunakan৳5, ৳10, ৳20, ৳50, ৳100, ৳200, ৳500 dan ৳1000 Jarang digunakan৳1, ৳2Uang koin Jarang digunakan৳1, ৳2, ৳...
Pour les articles homonymes, voir la page d’homonymie Hanovre (homonymie), ainsi que la page d’homonymie Hannover. Hanovre Hannover Armoiries Drapeau Administration Pays Allemagne Land Basse-Saxe Arrondissement(Landkreis) Région de Hanovre Nombre de quartiers(Ortsteile) 28 Bourgmestre(Oberbürgermeister) Mandat Belit Onay[1] (Alliance 90 / Les Verts) 2019- Partis au pouvoir SPD-Grüne Code postal 30001-30669 Code communal(Gemeindeschlüssel) 03 2 41 001 Indicatif téléphonique +49-511 ...
Voce principale: Trapani Calcio. Questa voce o sezione sull'argomento stagioni delle società calcistiche non è ancora formattata secondo gli standard. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Associazione Sportiva TrapaniStagione 1966-1967 Sport calcio Squadra Trapani Allenatore Eliseo Lodi Piero Andreoli Presidente Girolamo Marchello Serie C8º Miglior marcatoreCampionato: Nardi, Giugno (9) 1965-66 1967-68 ...
Historic county of the Kingdom of Croatia-Slavonia This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lika-Krbava County – news · newspapers · books · scholar ...
French nationalist activist (1927–2020) Pierre SidosPierre Sidos in 1976Born(1927-01-06)6 January 1927Saint-Pierre-d'Oléron, Nouvelle-Aquitaine, FranceDied4 September 2020(2020-09-04) (aged 93)Bayeux, FranceMovementMouvement Franciste (1943–45)Jeune Nation (1949–58)Parti Nationaliste (1958–59)Occident (1964–65)L'Œuvre Française (1968–2013)Parent(s)François SidosLouise Rocchi Pierre Sidos (6 January 1927 – 4 September 2020) was a French far right nationalist, neo-Pé...
Questa voce sugli argomenti calciatori algerini e calciatori francesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Sofiane Hanni Nazionalità Algeria Altezza 178 cm Peso 72 kg Calcio Ruolo Centrocampista Squadra Al-Khor CarrieraGiovanili 1998-2001 Ivry2001-2005 Boulogne-Billancourt2005-2009 NantesSquadre di club1 2009-2011 Nantes4 (0)2011-2013 K. Erciyesspor...
Pour un article plus général, voir Fortifications de Québec. Citadelle de QuébecLa Citadelle de Québec, vue du ciel.PrésentationPartie de Fortifications de Québec, Vieux-QuébecDestination initiale Fort militaireDestination actuelle Résidence d'ÉtatStyle Forteresse à la VaubanArchitecte Elias Walker DurnfordConstruction XVIIe XVIIIe XIXe sièclesPropriétaire Défense nationalePatrimonialité Lieu historique national (1946)Site web www.lacitadelle.qc.caLocalisationPays CanadaCommun...
Early and obsolete type of computer memory For the early computer, see Harwell Dekatron Computer. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2009) (Learn how and when to remove this message) DekatronOctal-base dekatronWorking principleCold cathodeInvented1949[1] Computer memory and Computer data storage types General Memory cell ...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2019) منتخب دومينيكا لكرة القدم للسيدات بلد الرياضة دومينيكا الفئة كرة القدم للسيدات رمز الفيفا DMA ال�...
American college basketball season 2012–13 Michigan State Spartans men's basketballNCAA tournament, Sweet SixteenConferenceBig Ten ConferenceRankingCoachesNo. 13APNo. 9Record27–9 (13–5 Big Ten)Head coachTom Izzo (18th season)Associate head coachDwayne Stephens (10th season)Assistant coaches Mike Garland (6th season) Dane Fife (2nd season) Captains Keith Appling Russell Byrd Derrick Nix Home arenaBreslin CenterSeasons← 2011–122013–14 → 2...
Indonesiadalam tahun1988 ← 1986 1987 1988 1989 1990 → Dekade :1980-anAbad :ke-20Milenium :ke-2Lihat juga Sejarah Indonesia Garis waktu sejarah Indonesia Indonesia menurut tahun Bagian dari seri mengenai Sejarah Indonesia Prasejarah Manusia Jawa 1.000.000 BP Manusia Flores 94.000–12.000 BP Bencana alam Toba 75.000 BP Kebudayaan Buni 400 SM Kerajaan Hindu-Buddha Kerajaan Kutai 400–1635 Kerajaan Tarumanagara 450–900 Kerajaan Kalingga 594–782 Kerajaa...
Disambiguazione – Hispania rimanda qui. Se stai cercando l'omonimo comune della Colombia, vedi Hispania (Colombia). SpagnaInformazioni generaliNome ufficiale(LA) Hispania CapoluogoTarraco (Hispania Citerior), eCorduba (Hispania Ulterior);poi Emerita Augusta (Merida) Dipendente daRepubblica romana Impero romano Suddiviso inSpagna citeriore, Spagna ulteriore AmministrazioneForma amministrativaProvincia romana GovernatoriGovernatori romani della Hispania Evoluzione storicaInizio206 a....