Calcium chloride is commonly encountered as a hydrated solid with generic formula CaCl2·nH2O, where n = 0, 1, 2, 4, and 6. These compounds are mainly used for de-icing and dust control. Because the anhydrous salt is hygroscopic and deliquescent, it is used as a desiccant.[10]
History
Calcium chloride was apparently discovered in the 15th century but wasn't studied properly until the 18th century.[11] It was historically called "fixed sal ammoniac" (Latin: sal ammoniacum fixum[12]) because it was synthesized during the distillation of ammonium chloride with lime and was nonvolatile (while the former appeared to sublime); in more modern times (18th-19th cc.) it was called "muriate of lime" (Latin: murias calcis, calcaria muriatica[12]).[13]
By depressing the freezing point of water, calcium chloride is used to prevent ice formation and is used to de-ice. This application consumes the greatest amount of calcium chloride. Calcium chloride is relatively harmless to plants and soil. As a de-icing agent, it is much more effective at lower temperatures than sodium chloride. When distributed for this use, it usually takes the form of small, white spheres a few millimeters in diameter, called prills. Solutions of calcium chloride can prevent freezing at temperatures as low as −52 °C (−62 °F), making it ideal for filling agricultural implement tires as a liquid ballast, aiding traction in cold climates.[14]
It is also used in domestic and industrial chemical air dehumidifiers.[15]
The second largest application of calcium chloride exploits its hygroscopic nature and the tackiness of its hydrates; calcium chloride is highly hygroscopic and its hydration is an exothermic process. A concentrated solution keeps a liquid layer on the surface of dirt roads, which suppresses the formation of dust. It keeps the finer dust particles on the road, providing a cushioning layer. If these are allowed to blow away, the large aggregate begins to shift around and the road breaks down. Using calcium chloride reduces the need for grading by as much as 50% and the need for fill-in materials as much as 80%.[16]
Food
In the food industry, calcium chloride is frequently employed as a firming agent in canned vegetables, particularly for canned tomatoes and cucumber pickles.[17][18][19][20] It is also used in firming soybean curds into tofu and in producing a caviar substitute from vegetable or fruit juices.[21][22][23] It is also used to enhance the texture of various other products, such as whole apples, whole hot peppers, whole and sliced strawberries, diced tomatoes, and whole peaches.[24][25]
The firming effect of calcium chloride can be attributed to several mechanisms:[24]
Complexation, since calcium ions form complexes with pectin, a polysaccharide found in the cell wall and middle lamella of plant tissues.[24]
Membrane stabilization, since calcium ions contribute to the stabilization of the cell membrane.[24]
Turgor pressure regulation, since calcium ions influence cell turgor pressure, which is the pressure exerted by the cell contents against the cell wall.[24]
Calcium chloride's freezing-point depression properties are used to slow the freezing of the caramel in caramel-filled chocolate bars.[citation needed] Also, it is frequently added to sliced apples to maintain texture.[26]
In brewing beer, calcium chloride is sometimes used to correct mineral deficiencies in the brewing water. It affects flavor and chemical reactions during the brewing process, and can also affect yeast function during fermentation.[27][28][29][30][31]
In cheesemaking, calcium chloride is sometimes added to processed (pasteurized/homogenized) milk to restore the natural balance between calcium and protein in casein. It is added before the coagulant.[32]
The elemental calcium content in calcium chloride hexahydrate (CaCl2·6H2O) is approximately 18.2%. This means that for every gram of calcium chloride hexahydrate, there are about 182 milligrams of elemental calcium.
For anhydrous calcium chloride (CaCl2), the elemental calcium content is slightly higher, around 36.1% (for every gram of anhydrous calcium chloride there are about 361 milligrams of elemental calcium).
Calcium chloride has a very salty taste and can cause mouth and throat irritation at high concentrations, so it is typically not the first choice for long-term oral supplementation (as a calcium supplement).[40][41] Calcium chloride, characterized by its low molecular weight and high water solubility, readily breaks down into calcium and chloride ions when exposed to water. These ions are efficiently absorbed from the intestine.[42] However, caution should be exercised when handling calcium chloride, for it has the potential to release heat energy upon dissolution in water. This release of heat can lead to trauma and burns in the mouth, throat, esophagus, and stomach. In fact, there have been reported cases of stomach necrosis resulting from burns caused by accidental ingestions of big amounts of undissolved calcium chloride.[43][44]
The extremely salty taste of calcium chloride is used to flavor pickles without increasing the food's sodium content.[45]
Calcium chloride is used to prevent cork spot and bitter pit on apples by spraying on the tree during the late growing season.[46]
Laboratory and related drying operations
Drying tubes are frequently packed with calcium chloride. Kelp is dried with calcium chloride for use in producing sodium carbonate. Anhydrous calcium chloride has been approved by the FDA as a packaging aid to ensure dryness (CPG 7117.02).[47]
The hydrated salt can be dried for re-use but will dissolve in its own water of hydration if heated quickly and form a hard amalgamated solid when cooled.
Calcium chloride is a highly soluble calcium salt. Hexahydrate calcium chloride (CaCl2·6H2O) has solubility in water of 811 g/L at 25 °C.[1] Calcium chloride when taken orally completely dissociates into calcium ions (Ca2+) in the gastrointestinal tract, resulting in readily bioavailable calcium. The high concentration of calcium ions facilitates efficient absorption in the small intestine.[42][53] However, the use of calcium chloride as a source of calcium taken orally is less common compared to other calcium salts because of potential adverse effects such as gastrointestinal irritation and discomfort.[53][54][55]
When tasted, calcium chloride exhibits a distinctive bitter flavor alongside its salty taste. The bitterness is attributable to the calcium ions and their interaction with human taste receptors: certain members of the TAS2R family of bitter taste receptors respond to calcium ions; the bitter perception of calcium is thought to be a protective mechanism to avoid ingestion of toxic substances, as many poisonous compounds taste bitter. While chloride ions (Cl⁻) primarily contribute to saltiness, at higher concentrations, they can enhance the bitter sensation. The combination of calcium and chloride ions intensifies the overall bitterness. At lower concentrations, calcium chloride may taste predominantly salty. The salty taste arises from the electrolyte nature of the compound, similar to sodium chloride (table salt). As the concentration increases, the bitter taste becomes more pronounced: the increased presence of calcium ions enhances the activation of bitterness receptors.[56][57][58]
Calcium chloride is used in concrete mixes to accelerate the initial setting, but chloride ions lead to corrosion of steel rebar, so it should not be used in reinforced concrete.[59] The anhydrous form of calcium chloride may also be used for this purpose and can provide a measure of the moisture in concrete.[60]
Calcium chloride is included as an additive in plastics and in fire extinguishers, in blast furnaces as an additive to control scaffolding (clumping and adhesion of materials that prevent the furnace charge from descending), and in fabric softener as a thinner.[citation needed]
Calcium chloride is used as a water hardener in the maintenance of hot tub water, as insufficiently hard water can lead to corrosion and foaming.[citation needed]
In the oil industry, calcium chloride is used to increase the density of solids-free brines. It is also used to provide inhibition of swelling clays in the water phase of invert emulsion drilling fluids.[citation needed]
Calcium chloride (CaCl 2) acts as flux material, decreasing the melting point, in the Davy process for the industrial production of sodium metal through the electrolysis of molten NaCl.[citation needed]
Calcium chloride is also an ingredient used in ceramic slipware. It suspends clay particles so that they float within the solution, making it easier to use in a variety of slipcasting techniques.[citation needed]
For watering plants to use as a fertilizer, a moderate concentration of calcium chloride is used to avoid potential toxicity: 5 to 10 mM (millimolar) is generally effective and safe for most plants—that is 0.55–1.11 grams (0.019–0.039 oz) of anhydrous calcium chloride (CaCl 2) per liter of water or 1.10–2.19 grams (0.039–0.077 oz) of calcium chloride hexahydrate (CaCl 2·6H 2O) per liter of water.[61][62] Calcium chloride solution is used immediately after preparation to prevent potential alterations in its chemical composition.[63][64] Besides that, calcium chloride is highly hygroscopic, meaning it readily absorbs moisture from the air.[65] If the solution is left standing, it can absorb additional water vapor, leading to dilution and a decrease in the intended concentration.[65] Prolonged standing may lead to the precipitation of calcium hydroxide or other insoluble calcium compounds, reducing the availability of calcium ions in the solution[66] and reducing the effectiveness of the solution as a calcium source for plants.[66] Nutrient solutions can become a medium for microbial growth if stored for extended periods.[67] Microbial contamination may alter the composition of the solution and potentially introduce pathogens to the plants.[67] When dissolved in water, calcium chloride can undergo hydrolysis, especially over time, which can lead to the formation of small amounts of hydrochloric acid and calcium hydroxide: Ca+ 2+2H 2O ⇌ Ca(OH) 2+2H+ . This reaction can lower the pH of the solution, making it more acidic.[68] Acidic solutions may harm plant tissues and disrupt nutrient uptake.[69]
Calcium chloride dihydrate (20 percent by weight) dissolved in ethanol (95 percent ABV) has been used as a sterilant for male animals. The solution is injected into the testes of the animal. Within one month, necrosis of testicular tissue results in sterilization.[70][71][non-primary sources needed]
Cocaine producers in Colombia import tons of calcium chloride to recover solvents that are on the INCB Red List and are more tightly controlled.[72]
Hazards
Although the salt is non-toxic in small quantities when wet, the strongly hygroscopic properties of non-hydrated calcium chloride present some hazards. It can act as an irritant by desiccating moist skin. Solid calcium chloride dissolves exothermically, and burns can result in the mouth and esophagus if it is ingested. Ingestion of concentrated solutions or solid products may cause gastrointestinal irritation or ulceration.[73]
Calcium chloride dissolves in water, producing chloride and the aquo complex[Ca(H2O)6]2+. In this way, these solutions are sources of "free" calcium and free chloride ions. This description is illustrated by the fact that these solutions react with phosphate sources to give a solid precipitate of calcium phosphate:
3 CaCl2 + 2 PO3−4 → Ca3(PO4)2 + 6 Cl−
Calcium chloride has a very high enthalpy change of solution, indicated by considerable temperature rise accompanying dissolution of the anhydrous salt in water. This property is the basis for its largest-scale application.
Aqueous solutions of calcium chloride tend to be slightly acidic due to the influence of the chloride ions on the hydrogen ion concentration in water. The slight acidity of calcium chloride solutions is primarily due to the increased ionic strength of the solution, which can influence the activity of hydrogen ions and lower the pH slightly. The pH of calcium chloride in aqueous solution is the following:[75][76]
In much of the world, calcium chloride is derived from limestone as a by-product of the Solvay process, which follows the net reaction below:[10]
2 NaCl + CaCO3 → Na2CO3 + CaCl2
North American consumption in 2002 was 1,529,000 tonnes (3.37 billion pounds).[77] In the US, most calcium chloride is obtained by purification from brine. As with most bulk commodity salt products, trace amounts of other cations from the alkali metals and alkaline earth metals (groups 1 and 2) and other anions from the halogens (group 17) typically occur.[10]
Occurrence
Calcium chloride occurs as the rare evaporite minerals sinjarite (dihydrate) and antarcticite (hexahydrate).[78][79][80] Another natural hydrate known is ghiaraite – a tetrahydrate.[81][80] The related minerals chlorocalcite (potassium calcium chloride, KCaCl3) and tachyhydrite (calcium magnesium chloride, CaMg2Cl6·12H2O) are also very rare.[82][83][80] The same is true for rorisite, CaClF (calcium chloride fluoride).[84][80]
^"Calcium chloride (anhydrous)". ICSC. International Programme on Chemical Safety and the European Commission. Archived from the original on 25 September 2015. Retrieved 18 September 2015.
^Garrett DE (2004). Handbook of Lithium and Natural Calcium Chloride. Elsevier. p. 379. ISBN978-0-08-047290-4. Archived from the original on 31 October 2023. Retrieved 29 August 2018. Its toxicity upon ingestion, is indicated by the test on rats: oral LD50 (rat) is 1.0–1.4 g/kg (the lethal dose for half of the test animals, in this case rats...)
^"Dust: Don't Eat It! Control It!". Road Management & Engineering Journal. US Roads (TranSafety Inc.). 1 June 1998. Archived from the original on 29 October 2007. Retrieved 9 August 2006.
^McFeeters RF, Pérez-Díaz I (2010). "Fermentation of Cucumbers Brined with Calcium Chloride Instead of Sodium Chloride". Journal of Food Science. 75 (3): C291-6. doi:10.1111/j.1750-3841.2010.01558.x. PMID20492282.
^Food Chemicals Codex. The United States Pharmacopeial Convention. ISBN978-1-936424-26-9.
^Guillou A, Floros J, Cousin M (1992). "Calcium Chloride and Potassium Sorbate Reduce Sodium Chloride used during Natural Cucumber Fermentation and Storage". Journal of Food Science. 57 (6): 1364–1368. doi:10.1111/j.1365-2621.1992.tb06859.x.
^Devanampriyan Rajan, Chitra Devi Venkatachalam, Mahalakshmi R. L. Sruthi, Shaikh Mohd Riyan (2024). Emulsification and Spherification. Structured Foods. CRC Press. ISBN978-1-003-35544-1.
^Vega C, Ubbink J, Linden Ev (13 August 2013). The Kitchen as Laboratory: Reflections on the Science of Food and Cooking. Columbia University Press. ISBN978-0-231-15345-4.
^This H (18 August 2008). Molecular Gastronomy: Exploring the Science of Flavor. Columbia University Press. ISBN978-0-231-13313-5.
^ abcdeLuna-Guzmán I, Barrett DM (May 2000). "Comparison of calcium chloride and calcium lactate effectiveness in maintaining shelf stability and quality of fresh-cut cantaloupes". Postharvest Biology and Technology. 19 (1): 61–72. doi:10.1016/S0925-5214(00)00079-X.
^"Apple Caviar Technique". StarChefs Studio. StarChefs.com. April 2004. Archived from the original on 29 June 2022. Retrieved 9 August 2006.
^Sitbon C, Paliyath G (2011). "Pre- and Postharvest Treatments Affecting Nutritional Quality". Comprehensive Biotechnology. Pre- and Postharvest Treatments Affecting Nutritional Quality. Academic Press. pp. 349–357. doi:10.1016/B978-0-08-088504-9.00275-0. ISBN978-0-08-088504-9.
^Palmer JJ, Kaminski C (2013). Water: A Comprehensive Guide for Brewers. Brewers Publications. ISBN978-0-937381-99-1.
^Briggs B, Boulton C, Brooke P (28 September 2004). Brewing: Science and Practice. Woodhead Publishing Ltd. ISBN978-1-85573-490-6.
^"Cork Spot and Bitter Pit of Apples", Richard C. Funt and Michael A. Ellis, Ohioline.osu.edu/factsheet/plpath-fru-01
^"CPG 7117.02". FDA Compliance Articles. US Food and Drug Administration. March 1995. Archived from the original on 13 December 2007. Retrieved 3 December 2007.
^Loscalzo J, Fauci AS, Kasper DL, Hauser SL, Longo DL, Larry Jameson J (2022). Harrison's Principles of Internal Medicine. McGraw Hill. ISBN978-1-264-26850-4.
^Hofer AM, Brown EM (2003). "Extracellular calcium sensing and signalling". Nature Reviews Molecular Cell Biology. 4 (7): 530–538. doi:10.1038/nrm1154. PMID12838336.
^Amir M, Sinha V, Kistangari G, Lansang MC (2020). "Clinical Characteristics of Patients with Type 2 Diabetes Mellitus Continued on Oral Antidiabetes Medications in the Hospital". Endocrine Practice. 26 (2): 167–173. doi:10.4158/EP-2018-0524. PMID31557075.
^Feingold KR, et al. (2000). Hypocalcemia: Diagnosis and Treatment. PMID25905251.
^Brunton LL, Knollmann BC (2022). Goodman and Gilman's The Pharmacological Basis of Therapeutics. McGraw Hill. ISBN978-1-264-25807-9.
^ abHeaney RP, Recker RR, Weaver CM (May 1990). "Absorbability of calcium sources: the limited role of solubility". Calcif Tissue Int. 46 (5): 300–4. doi:10.1007/BF02563819. PMID2110852.
^Straub DA (June 2007). "Calcium supplementation in clinical practice: a review of forms, doses, and indications". Nutr Clin Pract. 22 (3): 286–96. doi:10.1177/0115426507022003286. PMID17507729.
^Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Ross AC, Taylor CL, Yaktine AL, Del Valle HB (2011). Dietary Reference Intakes for Calcium and Vitamin D. doi:10.17226/13050. ISBN978-0-309-16394-1. PMID21796828.
^National Research Council (U.S.). Building Research Institute (1962). Adhesives in Building: Selection and Field Application; Pressure-sensitive Tapes. National Academy of Science-National Research Council. pp. 24–5.
^Kang J, Zhao W, Zheng Y, Zhang DM, Zhou H, Sun P (13 April 2017). "Calcium chloride improves photosynthesis and water status in the C4 succulent xerophyte Haloxylon ammodendron under water deficit". Plant Growth Regulation. 82 (3): 467–478. doi:10.1007/s10725-017-0273-4.
^Kirkby EA (1981). "Functional Aspects of Minerals in Plant Metabolism". Encyclopedia of Plant Physiology. 15: 679–698. doi:10.1007/978-3-642-68090-8_30 (inactive 24 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)