The pH scale is logarithmic and inversely indicates the activity of hydrogen ions in the solution
where [H+] is the equilibriummolar concentration of H+ (in M = mol/L) in the solution. At 25 °C (77 °F), solutions with a pH less than 7 are acidic, and solutions with a pH greater than 7 are basic. Solutions with a pH of 7 at 25 °C are neutral (i.e. have the same concentration of H+ ions as OH− ions, i.e. the same as pure water). The neutral value of the pH depends on the temperature and is lower than 7 if the temperature increases above 25 °C. The pH range is commonly given as zero to 14, but a pH value can be less than 0 for very concentrated strong acids or greater than 14 for very concentrated strong bases.[2]
In 1909, the Danish chemist Søren Peter Lauritz Sørensen introduced the concept of pH at the Carlsberg Laboratory,[4] originally using the notation "pH•", with H• as a subscript to the lowercase p. The concept was later revised in 1924 to the modern pH to accommodate definitions and measurements in terms of electrochemical cells.
For the sign p, I propose the name 'hydrogen ion exponent' and the symbol pH•. Then, for the hydrogen ion exponent (pH•) of a solution, the negative value of the Briggsian logarithm of the related hydrogen ion normality factor is to be understood.[4]
Sørensen did not explain why he used the letter p, and the exact meaning of the letter is still disputed.[5][6] Sørensen described a way of measuring pH using potential differences, and it represents the negative power of 10 in the concentration of hydrogen ions. The letter p could stand for the French puissance, German Potenz, or Danish potens, all meaning "power", or it could mean "potential". All of these words start with the letter p in French, German, and Danish, which were the languages in which Sørensen published: Carlsberg Laboratory was French-speaking; German was the dominant language of scientific publishing; Sørensen was Danish. He also used the letter q in much the same way elsewhere in the paper, and he might have arbitrarily labelled the test solution "p" and the reference solution "q"; these letters are often paired.[7] Some literature sources suggest that "pH" stands for the Latin termpondus hydrogenii (quantity of hydrogen) or potentia hydrogenii (power of hydrogen), although this is not supported by Sørensen's writings.[8][9][10]
Bacteriologist Alice Catherine Evans, who influenced dairying and food safety, credited William Mansfield Clark and colleagues, including herself, with developing pH measuring methods in the 1910s, which had a wide influence on laboratory and industrial use thereafter. In her memoir, she does not mention how much, or how little, Clark and colleagues knew about Sørensen's work a few years prior.[12] She said:
In these studies [of bacterial metabolism] Dr. Clark's attention was directed to the effect of acid on the growth of bacteria. He found that it is the intensity of the acid in terms of hydrogen-ion concentration that affects their growth. But existing methods of measuring acidity determined the quantity, not the intensity, of the acid. Next, with his collaborators, Dr. Clark developed accurate methods for measuring hydrogen-ion concentration. These methods replaced the inaccurate titration method of determining the acid content in use in biologic laboratories throughout the world. Also they were found to be applicable in many industrial and other processes in which they came into wide usage.[12]
The first electronic method for measuring pH was invented by Arnold Orville Beckman, a professor at the California Institute of Technology in 1934.[13] It was in response to a request from the local citrus grower Sunkist, which wanted a better method for quickly testing the pH of lemons they were picking from their nearby orchards.[14]
Definition
pH
The pH of a solution is defined as the decimal logarithm of the reciprocal of the hydrogen ionactivity, aH+.[3] Mathematically, pH is expressed as:
For example, for a solution with a hydrogen ion activity of 5×10−6 (i.e., the concentration of hydrogen ions in moles per litre), the pH of the solution can be calculated as follows:
The concept of pH was developed because ion-selective electrodes, which are used to measure pH, respond to activity. The electrode potential, E, follows the Nernst equation for the hydrogen ion, which can be expressed as:
where E is a measured potential, E0 is the standard electrode potential, R is the gas constant, T is the temperature in Kelvin, F is the Faraday constant. For H+, the number of electrons transferred is one. The electrode potential is proportional to pH when pH is defined in terms of activity.
The precise measurement of pH is presented in International Standard ISO 31-8 as follows:[15] A galvanic cell is set up to measure the electromotive force (e.m.f.) between a reference electrode and an electrode sensitive to the hydrogen ion activity when they are both immersed in the same aqueous solution. The reference electrode may be a silver chloride electrode or a calomel electrode, and the hydrogen-ion selective electrode is a standard hydrogen electrode.
Reference electrode | concentrated solution of KCl || test solution | H2 | Pt
Firstly, the cell is filled with a solution of known hydrogen ion activity and the electromotive force, ES, is measured. Then the electromotive force, EX, of the same cell containing the solution of unknown pH is measured.
The difference between the two measured electromotive force values is proportional to pH. This method of calibration avoids the need to know the standard electrode potential. The proportionality constant, 1/z, is ideally equal to , the "Nernstian slope".
In practice, a glass electrode is used instead of the cumbersome hydrogen electrode. A combined glass electrode has an in-built reference electrode. It is calibrated against Buffer solutions of known hydrogen ion (H+) activity proposed by the International Union of Pure and Applied Chemistry (IUPAC).[3] Two or more buffer solutions are used in order to accommodate the fact that the "slope" may differ slightly from ideal. To calibrate the electrode, it is first immersed in a standard solution, and the reading on a pH meter is adjusted to be equal to the standard buffer's value. The reading from a second standard buffer solution is then adjusted using the "slope" control to be equal to the pH for that solution. Further details, are given in the IUPAC recommendations.[16] When more than two buffer solutions are used the electrode is calibrated by fitting observed pH values to a straight line with respect to standard buffer values. Commercial standard buffer solutions usually come with information on the value at 25 °C and a correction factor to be applied for other temperatures.
This was the original definition of Sørensen in 1909,[18] which was superseded in favor of pH in 1924. [H] is the concentration of hydrogen ions, denoted [H+] in modern chemistry. More correctly, the thermodynamic activity of H+ in dilute solution should be replaced by [H+]/c0, where the standard state concentration c0 = 1 mol/L. This ratio is a pure number whose logarithm can be defined.
It is possible to measure the concentration of hydrogen ions directly using an electrode calibrated in terms of hydrogen ion concentrations. One common method is to titrate a solution of known concentration of a strong acid with a solution of known concentration of strong base in the presence of a relatively high concentration of background electrolyte. By knowing the concentrations of the acid and base, the concentration of hydrogen ions can be calculated and the measured potential can be correlated with concentrations. The calibration is usually carried out using a Gran plot.[19] This procedure makes the activity of hydrogen ions equal to the numerical value of concentration.
The glass electrode (and other Ion selective electrodes) should be calibrated in a medium similar to the one being investigated. For instance, if one wishes to measure the pH of a seawater sample, the electrode should be calibrated in a solution resembling seawater in its chemical composition.
The difference between p[H] and pH is quite small, and it has been stated that pH = p[H] + 0.04.[20] However, it is common practice to use the term "pH" for both types of measurement.
pOH
pOH is sometimes used as a measure of the concentration of hydroxide ions, OH−. By definition, pOH is the negative logarithm (to the base 10) of the hydroxide ion concentration (mol/L). pOH values can be derived from pH measurements and vice-versa. The concentration of hydroxide ions in water is related to the concentration of hydrogen ions by
So, at room temperature, pOH ≈ 14 − pH. However this relationship is not strictly valid in other circumstances, such as in measurements of soil alkalinity.
pH can be measured using indicators, which change color depending on the pH of the solution they are in. By comparing the color of a test solution to a standard color chart, the pH can be estimated to the nearest whole number. For more precise measurements, the color can be measured using a colorimeter or spectrophotometer. A Universal indicator is a mixture of several indicators that can provide a continuous color change over a range of pH values, typically from about pH 2 to pH 10. Universal indicator paper is made from absorbent paper that has been impregnated with universal indicator. An alternative method of measuring pH is using an electronic pH meter, which directly measures the voltage difference between a pH-sensitive electrode and a reference electrode.
Non-aqueous solutions
pH values can be measured in non-aqueous solutions, but they are based on a different scale from aqueous pH values, because the standard states used for calculating hydrogen ion concentrations (activities) are different. The hydrogen ion activity, aH+, is defined[21][22] as:
where μH+ is the chemical potential of the hydrogen ion, is its chemical potential in the chosen standard state, R is the gas constant and T is the thermodynamic temperature. Therefore, pH values on the different scales cannot be compared directly because of differences in the solvated proton ions, such as lyonium ions, which require an intersolvent scale which involves the transfer activity coefficient of hydronium/lyonium ion.
In 2010, a new approach to measuring pH was proposed, called the unified absolute pH scale. This approach allows for a common reference standard to be used across different solutions, regardless of their pH range. The unified absolute pH scale is based on the absolute chemical potential of the proton, as defined by the Lewis acid–base theory. This scale is applicable to liquids, gases, and even solids.[23] The advantages of the unified absolute pH scale include consistency, accuracy, and applicability to a wide range of sample types. It is precise and versatile because it serves as a common reference standard for pH measurements. However, implementation efforts, compatibility with existing data, complexity, and potential costs are some challenges.
The measurement of pH can become difficult at extremely acidic or alkaline conditions, such as below pH 2.5 (ca. 0.003 mol/dm3 acid) or above pH 10.5 (above ca. 0.0003 mol/dm3 alkaline). This is due to the breakdown of the Nernst equation in such conditions when using a glass electrode. There are several factors that contribute to this problem. Firstly, liquid junction potentials may not be independent of pH.[24] Secondly, the high ionic strength of concentrated solutions can affect the electrode potentials. At high pH the glass electrode may be affected by "alkaline error", because the electrode becomes sensitive to the concentration of cations such as Na+ and K+ in the solution.[25] To overcome these problems, specially constructed electrodes are available.
Runoff from mines or mine tailings can produce some extremely low pH values, down to −3.6.[26]
Applications
Pure water has a pH of 7 at 25°C, meaning it is neutral. When an acid is dissolved in water, the pH will be less than 7, while a base, or alkali, will have a pH greater than 7. A strong acid, such as hydrochloric acid, at concentration 1 mol dm−3 has a pH of 0, while a strong alkali like sodium hydroxide, at the same concentration, has a pH of 14. Since pH is a logarithmic scale, a difference of one in pH is equivalent to a tenfold difference in hydrogen ion concentration.
Neutrality is not exactly 7 at 25°C, but 7 serves as a good approximation in most cases. Neutrality occurs when the concentration of hydrogen ions ([H+]) equals the concentration of hydroxide ions ([OH−]), or when their activities are equal. Since self-ionization of water holds the product of these concentration [H+] × [OH−] = Kw, it can be seen that at neutrality [H+] = [OH−] = √Kw, or pH = pKw/2. pKw is approximately 14 but depends on ionic strength and temperature, and so the pH of neutrality does also. Pure water and a solution of NaCl in pure water are both neutral, since dissociation of water produces equal numbers of both ions. However the pH of the neutral NaCl solution will be slightly different from that of neutral pure water because the hydrogen and hydroxide ions' activity is dependent on ionic strength, so Kw varies with ionic strength.
When pure water is exposed to air, it becomes mildly acidic. This is because water absorbs carbon dioxide from the air, which is then slowly converted into bicarbonate and hydrogen ions (essentially creating carbonic acid).
Topsoil pH is influenced by soil parent material, erosional effects, climate and vegetation. A recent map[28] of topsoil pH in Europe shows the alkaline soils in Mediterranean, Hungary, East Romania, North France. Scandinavian countries, Portugal, Poland and North Germany have more acid soils.
The pH of seawater plays an important role in the ocean's carbon cycle. There is evidence of ongoing ocean acidification (meaning a drop in pH value): Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05.[29]Carbon dioxide emissions from human activities are the primary cause of ocean acidification, with atmospheric carbon dioxide (CO2) levels exceeding 410 ppm (in 2020). CO2 from the atmosphere is absorbed by the oceans. This produces carbonic acid (H2CO3) which dissociates into a bicarbonate ion (HCO− 3) and a hydrogen ion (H+). The presence of free hydrogen ions (H+) lowers the pH of the ocean.
Three pH scales in oceanography
The measurement of pH in seawater is complicated by the chemical properties of seawater, and three distinct pH scales exist in chemical oceanography.[30] In practical terms, the three seawater pH scales differ in their pH values up to 0.10, differences that are much larger than the accuracy of pH measurements typically required, in particular, in relation to the ocean's carbonate system.[30] Since it omits consideration of sulfate and fluoride ions, the free scale is significantly different from both the total and seawater scales. Because of the relative unimportance of the fluoride ion, the total and seawater scales differ only very slightly.
As part of its operational definition of the pH scale, the IUPAC defines a series of Buffer solutions across a range of pH values (often denoted with National Bureau of Standards (NBS) or National Institute of Standards and Technology (NIST) designation). These solutions have a relatively low ionic strength (≈0.1) compared to that of seawater (≈0.7), and, as a consequence, are not recommended for use in characterizing the pH of seawater, since the ionic strength differences cause changes in electrode potential. To resolve this problem, an alternative series of buffers based on artificial seawater was developed.[31] This new series resolves the problem of ionic strength differences between samples and the buffers, and the new pH scale is referred to as the total scale, often denoted as pHT. The total scale was defined using a medium containing sulfate ions. These ions experience protonation, H+ + SO2− 4↔ HSO− 4, such that the total scale includes the effect of both protons (free hydrogen ions) and hydrogen sulfate ions:
[H+]T = [H+]F + [HSO− 4]
An alternative scale, the free scale, often denoted pHF, omits this consideration and focuses solely on [H+]F, in principle making it a simpler representation of hydrogen ion concentration. Only [H+]T can be determined,[32] therefore [H+]F must be estimated using the [SO2− 4] and the stability constant of HSO− 4, K* S:
However, it is difficult to estimate K* S in seawater, limiting the utility of the otherwise more straightforward free scale.
Another scale, known as the seawater scale, often denoted pHSWS, takes account of a further protonation relationship between hydrogen ions and fluoride ions, H+ + F− ⇌ HF. Resulting in the following expression for [H+]SWS:
[H+]SWS = [H+]F + [HSO− 4] + [HF]
However, the advantage of considering this additional complexity is dependent upon the abundance of fluoride in the medium. In seawater, for instance, sulfate ions occur at much greater concentrations (>400 times) than those of fluoride. As a consequence, for most practical purposes, the difference between the total and seawater scales is very small.
The following three equations summarize the three scales of pH:
The pH level of food influences its flavor, texture, and shelf life.[33] Acidic foods, such as citrus fruits, tomatoes, and vinegar, typically have a pH below 4.6[34] with sharp and tangy taste, while basic foods tastes bitter or soapy.[35] Maintaining the appropriate pH in foods is essential for preventing the growth of harmful microorganisms.[34] The alkalinity of vegetables such as spinach and kale can also influence their texture and color during cooking.[36] The pH also influences the Maillard reaction, which is responsible for the browning of food during cooking, impacting both flavor and appearance.[37]
In living organisms, the pH of various Body fluids, cellular compartments, and organs is tightly regulated to maintain a state of acid-base balance known as acid–base homeostasis. Acidosis, defined by blood pH below 7.35, is the most common disorder of acid–base homeostasis and occurs when there is an excess of acid in the body. In contrast, alkalosis is characterized by excessively high blood pH.
Blood pH is usually slightly basic, with a pH of 7.365, referred to as physiological pH in biology and medicine. Plaque formation in teeth can create a local acidic environment that results in tooth decay through demineralization. Enzymes and other Proteins have an optimal pH range for function and can become inactivated or denatured outside this range.
pH calculations
When calculating the pH of a solution containing acids and/or bases, a chemical speciation calculation is used to determine the concentration of all chemical species present in the solution. The complexity of the procedure depends on the nature of the solution. Strong acids and bases are compounds that are almost completely dissociated in water, which simplifies the calculation. However, for weak acids, a quadratic equation must be solved, and for weak bases, a cubic equation is required. In general, a set of non-linearsimultaneous equations must be solved.
Water itself is a weak acid and a weak base, so its dissociation must be taken into account at high pH and low solute concentration (see amphoterism). It dissociates according to the equilibrium
where [H+] stands for the concentration of the aqueous hydronium ion and [OH−] represents the concentration of the hydroxide ion. This equilibrium needs to be taken into account at high pH and when the solute concentration is extremely low.
Strong acids and bases
Strong acids and bases are compounds that are essentially fully dissociated in water. This means that in an acidic solution, the concentration of hydrogen ions (H+) can be considered equal to the concentration of the acid. Similarly, in a basic solution, the concentration of hydroxide ions (OH-) can be considered equal to the concentration of the base. The pH of a solution is defined as the negative logarithm of the concentration of H+, and the pOH is defined as the negative logarithm of the concentration of OH-. For example, the pH of a 0.01M solution of hydrochloric acid (HCl) is equal to 2 (pH = −log10(0.01)), while the pOH of a 0.01M solution of sodium hydroxide (NaOH) is equal to 2 (pOH = −log10(0.01)), which corresponds to a pH of about 12.
However, self-ionization of water must also be considered when concentrations of a strong acid or base is very low or high. For instance, a 5×10−8M solution of HCl would be expected to have a pH of 7.3 based on the above procedure, which is incorrect as it is acidic and should have a pH of less than 7. In such cases, the system can be treated as a mixture of the acid or base and water, which is an amphoteric substance. By accounting for the self-ionization of water, the true pH of the solution can be calculated. For example, a 5×10−8M solution of HCl would have a pH of 6.89 when treated as a mixture of HCl and water. The self-ionization equilibrium of solutions of sodium hydroxide at higher concentrations must also be considered.[43]
Weak acids and bases
A weak acid or the conjugate acid of a weak base can be treated using the same formalism.
Acid HA: HA ⇌ H+ + A−
Base A: HA+ ⇌ H+ + A
First, an acid dissociation constant is defined as follows. Electrical charges are omitted from subsequent equations for the sake of generality
and its value is assumed to have been determined by experiment. This being so, there are three unknown concentrations, [HA], [H+] and [A−] to determine by calculation. Two additional equations are needed. One way to provide them is to apply the law of mass conservation in terms of the two "reagents" H and A.
C stands for analytical concentration. In some texts, one mass balance equation is replaced by an equation of charge balance. This is satisfactory for simple cases like this one, but is more difficult to apply to more complicated cases as those below. Together with the equation defining Ka, there are now three equations in three unknowns. When an acid is dissolved in water CA = CH = Ca, the concentration of the acid, so [A] = [H]. After some further algebraic manipulation an equation in the hydrogen ion concentration may be obtained.
Solution of this quadratic equation gives the hydrogen ion concentration and hence p[H] or, more loosely, pH. This procedure is illustrated in an ICE table which can also be used to calculate the pH when some additional (strong) acid or alkaline has been added to the system, that is, when CA ≠ CH.
For example, what is the pH of a 0.01M solution of benzoic acid, pKa = 4.19?
Step 1:
Step 2: Set up the quadratic equation.
Step 3: Solve the quadratic equation.
For alkaline solutions, an additional term is added to the mass-balance equation for hydrogen. Since the addition of hydroxide reduces the hydrogen ion concentration, and the hydroxide ion concentration is constrained by the self-ionization equilibrium to be equal to , the resulting equation is:
General method
Some systems, such as with polyprotic acids, are amenable to spreadsheet calculations.[44] With three or more reagents or when many complexes are formed with general formulae such as ApBqHr, the following general method can be used to calculate the pH of a solution. For example, with three reagents, each equilibrium is characterized by an equilibrium constant, β.
Next, write down the mass-balance equations for each reagent:
There are no approximations involved in these equations, except that each stability constant is defined as a quotient of concentrations, not activities. Much more complicated expressions are required if activities are to be used.
There are three simultaneous equations in the three unknowns, [A], [B] and [H]. Because the equations are non-linear and their concentrations may range over many powers of 10, the solution of these equations is not straightforward. However, many computer programs are available which can be used to perform these calculations. There may be more than three reagents. The calculation of hydrogen ion concentrations, using this approach, is a key element in the determination of equilibrium constants by potentiometric titration.
^ abSørensen, S. P. L. (1909). "Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen"(PDF). Biochem. Z. 21: 131–304. Archived(PDF) from the original on 15 April 2021. Retrieved 22 March 2021. Original German: Für die Zahl p schlage ich den Namen Wasserstoffionenexponent und die Schreibweise pH• vor. Unter dem Wasserstoffionexponenten (pH•) einer Lösungwird dann der Briggsche Logarithmus des reziproken Wertes des auf Wasserstoffionenbezagenen Normalitäts faktors de Lösungverstanden. Two other publications appeared in 1909, one in French and one in Danish.
^ abEvans, Alice C. (1963). "Memoirs"(PDF). NIH Office of History. National Institutes of Health Office of History. Archived from the original(PDF) on 15 December 2017. Retrieved 27 March 2018.
^Tetrault, Sharon (June 2002). "The Beckmans". Orange Coast. Orange Coast Magazine. Archived from the original on 15 April 2021. Retrieved 11 March 2018.
^Rossotti, F.J.C.; Rossotti, H. (1965). "Potentiometric titrations solution containing the background electrolyte". J. Chem. Educ. 42. doi:10.1021/ed042p375.
^Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M. J. K. (2000), Vogel's Quantitative Chemical Analysis (6th ed.), New York: Prentice Hall, ISBN0-582-22628-7, Section 13.23, "Determination of pH"
^Himmel, Daniel; Goll, Sascha K.; Leito, Ivo; Krossing, Ingo (16 August 2010). "A Unified pH Scale for All Phases". Angewandte Chemie International Edition. 49 (38): 6885–6888. doi:10.1002/anie.201000252. ISSN1433-7851. PMID20715223.
^Feldman, Isaac (1956). "Use and Abuse of pH measurements". Analytical Chemistry. 28 (12): 1859–1866. doi:10.1021/ac60120a014.
^Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M. J. K. (2000), Vogel's Quantitative Chemical Analysis (6th ed.), New York: Prentice Hall, ISBN0-582-22628-7, Section 13.19 The glass electrode
^ abZeebe, R. E. and Wolf-Gladrow, D. (2001) CO2 in seawater: equilibrium, kinetics, isotopes, Elsevier Science B.V., Amsterdam, Netherlands ISBN0-444-50946-1
^Akdas, Zelal; Bakkalbasi, Emre (2017). "Influence of different cooking methods on color, bioactive compounds, and antioxidant activity of kale". International Journal of Food Properties. 20 (4): 877–887. doi:10.1080/10942912.2016.1188308.
BendoDesaNegara IndonesiaProvinsiJawa TengahKabupatenSragenKecamatanSukodonoKode pos57263Kode Kemendagri33.14.17.2003 Luas498.365,5 HaJumlah penduduk6116 jiwaKepadatan12jiwa/Ha Jumlah kebayanan ada 4 yaitu : Kebayanan I Mantup, Kebayanan II Bendo,Kebayanan III Cangakan, dan Kebayanan IV Mayah. Bendo adalah salah satu desa yang ada di kecamatan Sukodono, Kabupaten Sragen, Propinsi Jawa Tengah, Indonesia. Belum diketemukan bagaimana historis awal mulanya terbentuknya sebuah nama Desa ...
New Hampshire gubernatorial election 1876 New Hampshire gubernatorial election ← 1875 14 March 1876 1877 → Nominee Person Colby Cheney Daniel Marcy Party Republican Democratic Popular vote 41,761 38,133 Percentage 51.99% 47.48% Governor before election Person Colby Cheney Republican Elected Governor Person Colby Cheney Republican Elections in New Hampshire Federal government Presidential elections 1788–89 1792 1796 1800 1804 1808 1812 1816 1820 1824 1828 18...
MODYSON JR Southwark London Borough CouncilCoat of armsCouncil logoTypeTypeLondon borough council of the London Borough of Southwark LeadershipMayor of SouthwarkSunil Chopra, Labour since 18 May 2019 Leader of the CouncilKieron Williams, Labour since September 2020 Deputy LeaderJasmine Ali, Labour Leader of the OppositionVictor Chamberlain, Liberal Democrats Chief executiveLoderick Althea since February 2012 StructureSeats63 councillorsPolitical groupsAdministration (48) ...
For the defunct minor league baseball team, see Hamilton Cardinals (minor league baseball). Canadian collegiate baseball team Hamilton CardinalsInformationLeagueIntercounty Baseball LeagueLocationHamilton, OntarioBallparkBernie Arbour Memorial StadiumFounded1958League championships1 1978 Former name(s) Hamilton Cardinals (2012–present) (1975-2004) (1960-1961) Hamilton Thunderbirds (2005-2011) Hamilton Real McCoys (1973-1974) Hamilton Marlins (1970-1972) Hamilton Red Wings (1966-1969) Hamilt...
Bintang Republik Indonesia PratamaDianugerahkan oleh Presiden IndonesiaTipeBintang SipilDibentuk1959Negara IndonesiaKelayakanSipilStatusMasih dianugerahkanPrioritasTingkat lebih tinggiBintang Republik Indonesia UtamaTingkat lebih rendahBintang Republik Indonesia Nararya1959–19721972–sekarangPita tanda kehormatan Bintang Republik Indonesia Pratama adalah tanda kehormatan Bintang Republik Indonesia kelas IV. Sebagai kelas dari Bintang Republik Indonesia, bintang ini diberikan untuk men...
Historic ruins in Minnesota, United States United States historic placeJoseph Brown House RuinsU.S. National Register of Historic Places Ruins of Joseph R. Brown's house, burned in 1862Show map of MinnesotaShow map of the United StatesLocationSacred Heart Township, Renville County, Minnesota, USANearest citySacred Heart, MinnesotaCoordinates44°41′47″N 95°19′22″W / 44.69639°N 95.32278°W / 44.69639; -95.32278Built1861ArchitectLeopold WohlerNRHP reference...
Voce principale: Vicenza Calcio. Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Associazione Del Calcio Di VicenzaStagione 1924-1925Sport calcio SquadraVicenza Calcio Allenatore Imre János Bekey Presidente Riccardo Sebellin Seconda Divisione1º posto nel girone D. Relegato all'ultimo posto e retrocesso, poi reintegrato in soprann...
A protein that is isolated from soybean Soybean pod Soy protein is a protein that is isolated from soybean. It is made from soybean meal that has been dehulled and defatted. Dehulled and defatted soybeans are processed into three kinds of high protein commercial products: soy flour, concentrates, and isolates. Soy protein isolate has been used since 1959 in foods for its functional properties. Soy protein is generally regarded as being concentrated in protein bodies, which are estimated to co...
Robin Lod Nazionalità Finlandia Altezza 180 cm Peso 76 kg Calcio Ruolo Centrocampista Squadra Minnesota Utd Carriera Giovanili ????-2005 HJK Squadre di club1 2005-2009 Klubi 0434 (16)2011-2012 HJK9 (1)2012→ VPS11 (2)2013-2015 HJK75 (15)2015-2018 Panathīnaïkos75 (12)2018-2019 Sporting Gijón23 (4)2019- Minnesota Utd100 (24)[1] Nazionale 2010-2011 Finlandia U-181 (0)2011-2012 Finlandia U-194 (2)2012-2015 Finlandia U-2115 (1)2013...
Calendar used by the Akan people, a Kwa group of West Africa The Akan people (a Kwa group of West Africa) appear to have used a traditional system of timekeeping based on a six-day week (known as nnanson seven-days via inclusive counting). The Gregorian seven-day week is known as nnawɔtwe (eight-days). The combination of these two system resulted in periods of 40 days, known as adaduanan (meaning forty days).[1] Nnanson The composition or construction of the Adaduanan cycle appears t...
Hungarian-German physicist Waterfall effect redirects here. For the illusory visual motion after effect, see Motion aftereffect. The native form of this personal name is Lénárd Fülöp Eduárd Antal. This article uses Western name order when mentioning individuals. Philipp LenardPhilipp Lenard in 1900BornPhilipp Eduard Anton von Lenard(1862-06-07)7 June 1862Pressburg, Kingdom of Hungary, Austrian EmpireDied20 May 1947(1947-05-20) (aged 84)Messelhausen, GermanyCitizenshipHungarian...
1918 American filmThe Firefly of FranceLobby cardDirected byDonald CrispScreenplay byMargaret TurnbullBased onThe Firefly of Franceby Marion Polk AngelottiProduced byJesse L. LaskyStarringWallace ReidAnn LittleCharles OgleRaymond HattonWinter HallErnest JoyCinematographyHenry KotaniProductioncompanyJesse L. Lasky Feature Play CompanyDistributed byParamount PicturesRelease date July 7, 1918 (1918-07-07) Running time50 minutesCountryUnited StatesLanguageSilent (English intertitle...
Questa voce o sezione sull'argomento competizioni calcistiche non cita le fonti necessarie o quelle presenti sono insufficienti. Commento: Fonti assenti Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce o sezione sull'argomento competizioni calcistiche non è ancora formattata secondo gli standard. Commento: Voce da adeguare al corrispondente modello di vo...
Slovak football club This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: MŠK Žilina – news · newspapers · books · scholar · JSTOR (July 2009) (Learn how and when to remove this message) Football clubMŠK ŽilinaFull nameMŠK Žilina a.s.Nickname(s)Šošoni (The Shoshone) Žlto-Zelení (The Yellow-Greens)Founde...
Lady Pamela Carmen Louise Hicks (lahir Mountbatten; lahir 19 April 1929) adalah seorang aristokrat Inggris dan kerabat Keluarga Kerajaan Inggris. Dia adalah putri bungsu dari Louis Mountbatten, Earl Mountbatten dari Burma ke-1 (sebelumnya Pangeran Louis dari Battenberg) dan Edwina Mountbatten, Countess Mountbatten dari Burma. Melalui ayahnya, Lady Pamela adalah sepupu dari Pangeran Philip, Adipati Edinburgh, cucu-keponakan dari Maharani Rusia terakhir, Aleksandra Fyodorovna. Dia melayani seba...
Not to be confused with Culturomics (microbiology). Culturomics is a form of computational lexicology that studies human behavior and cultural trends through the quantitative analysis of digitized texts.[1][2] Researchers data mine large digital archives to investigate cultural phenomena reflected in language and word usage.[3] The term is an American neologism first described in a 2010 Science article called Quantitative Analysis of Culture Using Millions of Digitized...
Soviet-Russian lieutenant general and politician For other uses, see Aushev (disambiguation). In this name that follows Eastern Slavic naming customs, the patronymic is Sultanovich and the family name is Aushev. Ruslan AushevРуслан АушевОвшанаькъан РусланAushev in 2008Russian Federation Senatorfrom the Republic of IngushetiaIn office10 January 2002 – 23 April 2002Preceded bySeat establishedSucceeded byIssa Kostoyev1st President of IngushetiaIn office...
The Somerset Hills is the northern region of Somerset County, New Jersey including the townships of Bedminster, Bernards Township, Bernardsville, Far Hills boro, and Peapack & Gladstone. The Somerset Hills is known as the northern region of Somerset County located in the U.S. state of New Jersey and includes the municipalities of Bedminster, Bernardsville, Bernards Township, Far Hills, and Peapack-Gladstone.[1] The southwestern Morris County municipalities of the Chesters (Borough...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2015) جائزة أستراليا الكبرى 1983 (بالإنجليزية: XLVIII Australian Grand Prix) البلد أستراليا التاريخ 13 نوفمبر 1983 مكان التنظيم ملبورن، فيكتوريا طول المسار 1.609 كيلومتر (1.000 ...
غروسغلوكنر الموقع كيرنتن , النمسا إحداثيات 47°04′28″N 12°41′38″E / 47.074528°N 12.69385°E / 47.074528; 12.69385 [1] الارتفاع 3,798 متر (12,461 قدم) النتوء 2,423 متر (7,949 قدم) الوصول الأول 28 يوليو 1800، من قبل سيب ومارتن كلوتز تعديل مصدري - تعديل جبل غروسغلوكنر (تُلفظ بالألمانية...