Acid–base homeostasis

Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF).[1] The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism.[1] The pH of the intracellular fluid and the extracellular fluid need to be maintained at a constant level.[2]

The three dimensional structures of many extracellular proteins, such as the plasma proteins and membrane proteins of the body's cells, are very sensitive to the extracellular pH.[3][4] Stringent mechanisms therefore exist to maintain the pH within very narrow limits. Outside the acceptable range of pH, proteins are denatured (i.e. their 3D structure is disrupted), causing enzymes and ion channels (among others) to malfunction.

An acid–base imbalance is known as acidemia when the pH is acidic, or alkalemia when the pH is alkaline.

Lines of defense

In humans and many other animals, acid–base homeostasis is maintained by multiple mechanisms involved in three lines of defense:[5][6]

  1. Chemical: The first lines of defense are immediate, consisting of the various chemical buffers which minimize pH changes that would otherwise occur in their absence. These buffers include the bicarbonate buffer system, the phosphate buffer system, and the protein buffer system.[7]
  2. Respiratory component: The second line of defense is rapid consisting of the control the carbonic acid (H2CO3) concentration in the ECF by changing the rate and depth of breathing by hyperventilation or hypoventilation. This blows off or retains carbon dioxide (and thus carbonic acid) in the blood plasma as required.[5][8]
  3. Metabolic component: The third line of defense is slow, best measured by the base excess,[9] and mostly depends on the renal system which can add or remove bicarbonate ions (HCO
    3
    ) to or from the ECF.[5] Bicarbonate ions are derived from metabolic carbon dioxide which is enzymatically converted to carbonic acid in the renal tubular cells.[5][10][11] There, carbonic acid spontaneously dissociates into hydrogen ions and bicarbonate ions.[5] When the pH in the ECF falls, hydrogen ions are excreted into urine, while bicarbonate ions are secreted into blood plasma, causing the plasma pH to rise.[12] The converse happens if the pH in the ECF tends to rise: bicarbonate ions are then excreted into the urine and hydrogen ions into the blood plasma.

The second and third lines of defense operate by making changes to the buffers, each of which consists of two components: a weak acid and its conjugate base.[5][13] It is the ratio concentration of the weak acid to its conjugate base that determines the pH of the solution.[14] Thus, by manipulating firstly the concentration of the weak acid, and secondly that of its conjugate base, the pH of the extracellular fluid (ECF) can be adjusted very accurately to the correct value. The bicarbonate buffer, consisting of a mixture of carbonic acid (H2CO3) and a bicarbonate (HCO
3
) salt in solution, is the most abundant buffer in the extracellular fluid, and it is also the buffer whose acid-to-base ratio can be changed very easily and rapidly.[15]

Acid–base balance

The pH of the extracellular fluid, including the blood plasma, is normally tightly regulated between 7.32 and 7.42 by the chemical buffers, the respiratory system, and the renal system.[13][16][17][18][1] The normal pH in the fetus differs from that in the adult. In the fetus, the pH in the umbilical vein pH is normally 7.25 to 7.45 and that in the umbilical artery is normally 7.18 to 7.38.[19]

Aqueous buffer solutions will react with strong acids or strong bases by absorbing excess H+
ions, or OH
ions, replacing the strong acids and bases with weak acids and weak bases.[13] This has the effect of damping the effect of pH changes, or reducing the pH change that would otherwise have occurred. But buffers cannot correct abnormal pH levels in a solution, be that solution in a test tube or in the extracellular fluid. Buffers typically consist of a pair of compounds in solution, one of which is a weak acid and the other a weak base.[13] The most abundant buffer in the ECF consists of a solution of carbonic acid (H2CO3), and the bicarbonate (HCO
3
) salt of, usually, sodium (Na+).[5] Thus, when there is an excess of OH
ions in the solution carbonic acid partially neutralizes them by forming H2O and bicarbonate (HCO
3
) ions.[5][15] Similarly an excess of H+ ions is partially neutralized by the bicarbonate component of the buffer solution to form carbonic acid (H2CO3), which, because it is a weak acid, remains largely in the undissociated form, releasing far fewer H+ ions into the solution than the original strong acid would have done.[5]

The pH of a buffer solution depends solely on the ratio of the molar concentrations of the weak acid to the weak base. The higher the concentration of the weak acid in the solution (compared to the weak base) the lower the resulting pH of the solution. Similarly, if the weak base predominates the higher the resulting pH.[citation needed]

This principle is exploited to regulate the pH of the extracellular fluids (rather than just buffering the pH). For the carbonic acid-bicarbonate buffer, a molar ratio of weak acid to weak base of 1:20 produces a pH of 7.4; and vice versa—when the pH of the extracellular fluids is 7.4 then the ratio of carbonic acid to bicarbonate ions in that fluid is 1:20.[14]

Henderson–Hasselbalch equation

The Henderson–Hasselbalch equation, when applied to the carbonic acid-bicarbonate buffer system in the extracellular fluids, states that:[14]

where:

However, since the carbonic acid concentration is directly proportional to the partial pressure of carbon dioxide () in the extracellular fluid, the equation can be rewritten as follows:[5][14]

where:

  • pH is the negative logarithm of molar concentration of hydrogen ions in the extracellular fluid.
  • [HCO
    3
    ]
    is the molar concentration of bicarbonate in the plasma.
  • PCO2 is the partial pressure of carbon dioxide in the blood plasma.

The pH of the extracellular fluids can thus be controlled by the regulation of and the other metabolic acids.

Homeostatic mechanisms

Homeostatic control can change the PCO2 and hence the pH of the arterial plasma within a few seconds.[5] The partial pressure of carbon dioxide in the arterial blood is monitored by the central chemoreceptors of the medulla oblongata.[5][20] These chemoreceptors are sensitive to the levels of carbon dioxide and pH in the cerebrospinal fluid.[14][12][20]

The central chemoreceptors send their information to the respiratory centers in the medulla oblongata and pons of the brainstem.[12] The respiratory centres then determine the average rate of ventilation of the alveoli of the lungs, to keep the PCO2 in the arterial blood constant. The respiratory center does so via motor neurons which activate the muscles of respiration (in particular, the diaphragm).[5][21] A rise in the PCO2 in the arterial blood plasma above 5.3 kPa (40 mmHg) reflexly causes an increase in the rate and depth of breathing. Normal breathing is resumed when the partial pressure of carbon dioxide has returned to 5.3 kPa.[8] The converse happens if the partial pressure of carbon dioxide falls below the normal range. Breathing may be temporally halted, or slowed down to allow carbon dioxide to accumulate once more in the lungs and arterial blood.[citation needed]

The sensor for the plasma HCO
3
concentration is not known for certain. It is very probable that the renal tubular cells of the distal convoluted tubules are themselves sensitive to the pH of the plasma. The metabolism of these cells produces CO2, which is rapidly converted to H+ and HCO
3
through the action of carbonic anhydrase.[5][10][11] When the extracellular fluids tend towards acidity, the renal tubular cells secrete the H+ ions into the tubular fluid from where they exit the body via the urine. The HCO
3
ions are simultaneously secreted into the blood plasma, thus raising the bicarbonate ion concentration in the plasma, lowering the carbonic acid/bicarbonate ion ratio, and consequently raising the pH of the plasma.[5][12] The converse happens when the plasma pH rises above normal: bicarbonate ions are excreted into the urine, and hydrogen ions into the plasma. These combine with the bicarbonate ions in the plasma to form carbonic acid (H+ + HCO
3
H2CO3), thus raising the carbonic acid:bicarbonate ratio in the extracellular fluids, and returning its pH to normal.[5]

In general, metabolism produces more waste acids than bases.[5] Urine produced is generally acidic and is partially neutralized by the ammonia (NH3) that is excreted into the urine when glutamate and glutamine (carriers of excess, no longer needed, amino groups) are deaminated by the distal renal tubular epithelial cells.[5][11] Thus some of the "acid content" of the urine resides in the resulting ammonium ion (NH4+) content of the urine, though this has no effect on pH homeostasis of the extracellular fluids.[5][22]

Imbalance

An acid-base diagram for human plasma, showing the effects on the plasma pH when PCO2 in mmHg or Standard Base Excess (SBE) occur in excess or are deficient in the plasma[23]

Acid–base imbalance occurs when a significant insult causes the blood pH to shift out of the normal range (7.32 to 7.42[16]). An abnormally low pH in the extracellular fluid is called an acidemia and an abnormally high pH is called an alkalemia.[citation needed]

Acidemia and alkalemia unambiguously refer to the actual change in the pH of the extracellular fluid (ECF).[24] Two other similar sounding terms are acidosis and alkalosis. They refer to the customary effect of a component, respiratory or metabolic. Acidosis would cause an acidemia on its own (i.e. if left "uncompensated" by an alkalosis).[24] Similarly, an alkalosis would cause an alkalemia on its own.[24] In medical terminology, the terms acidosis and alkalosis should always be qualified by an adjective to indicate the etiology of the disturbance: respiratory (indicating a change in the partial pressure of carbon dioxide),[25] or metabolic (indicating a change in the Base Excess of the ECF).[9] There are therefore four different acid-base problems: metabolic acidosis, respiratory acidosis, metabolic alkalosis, and respiratory alkalosis.[5] One or a combination of these conditions may occur simultaneously. For instance, a metabolic acidosis (as in uncontrolled diabetes mellitus) is almost always partially compensated by a respiratory alkalosis (hyperventilation). Similarly, a respiratory acidosis can be completely or partially corrected by a metabolic alkalosis.[citation needed]

References

  1. ^ a b c Hamm LL, Nakhoul N, Hering-Smith KS (December 2015). "Acid-Base Homeostasis". Clinical Journal of the American Society of Nephrology. 10 (12): 2232–2242. doi:10.2215/CJN.07400715. PMC 4670772. PMID 26597304.
  2. ^ Tortora GJ, Derrickson B (2012). Principles of anatomy & physiology. Derrickson, Bryan. (13th ed.). Hoboken, NJ: Wiley. pp. 42–43. ISBN 9780470646083. OCLC 698163931.
  3. ^ Macefield G, Burke D (February 1991). "Paraesthesiae and tetany induced by voluntary hyperventilation. Increased excitability of human cutaneous and motor axons". Brain. 114 ( Pt 1B) (1): 527–540. doi:10.1093/brain/114.1.527. PMID 2004255.
  4. ^ Stryer L (1995). Biochemistry (4th ed.). New York: W.H. Freeman and Company. pp. 347, 348. ISBN 0-7167-2009-4.
  5. ^ a b c d e f g h i j k l m n o p q r s t Silverthorn DU (2016). Human physiology. An integrated approach (7th, Global ed.). Harlow, England: Pearson. pp. 607–608, 666–673. ISBN 978-1-292-09493-9.
  6. ^ Adrogué HE, Adrogué HJ (April 2001). "Acid-base physiology". Respiratory Care. 46 (4): 328–341. PMID 11345941.
  7. ^ "184 26.4 Acid-Base Balance | Anatomy and Physiology | OpenStax". openstax.org. Archived from the original on 2020-09-17. Retrieved 2020-07-01.
  8. ^ a b MedlinePlus Encyclopedia: Metabolic acidosis
  9. ^ a b Grogono A. "Terminology". Acid Base Tutorial. Grog LLC. Retrieved 9 April 2021.
  10. ^ a b Tortora GJ, Derrickson BH (1987). Principles of anatomy and physiology (Fifth ed.). New York: Harper & Row, Publishers. pp. 581–582, 675–676. ISBN 0-06-350729-3.
  11. ^ a b c Stryer L (1995). Biochemistry (Fourth ed.). New York: W.H. Freeman and Company. pp. 39, 164, 630–631, 716–717. ISBN 0-7167-2009-4.
  12. ^ a b c d Tortora GJ, Derrickson BH (1987). Principles of anatomy and physiology (Fifth ed.). New York: Harper & Row, Publishers. pp. 494, 556–582. ISBN 0-06-350729-3.
  13. ^ a b c d Tortora GJ, Derrickson BH (1987). Principles of anatomy and physiology (Fifth ed.). New York: Harper & Row, Publishers. pp. 698–700. ISBN 0-06-350729-3.
  14. ^ a b c d e Bray JJ (1999). Lecture notes on human physiology. Malden, Mass.: Blackwell Science. p. 556. ISBN 978-0-86542-775-4.
  15. ^ a b Garrett RH, Grisham CM (2010). Biochemistry. Cengage Learning. p. 43. ISBN 978-0-495-10935-8.
  16. ^ a b Diem K, Lentner C (1970). "Blood – Inorganic substances". in: Scientific Tables (Seventh ed.). Basle, Switzerland: CIBA-GEIGY Ltd. p. 527.
  17. ^ MedlinePlus Encyclopedia: Blood gases
  18. ^ Caroline N (2013). Nancy Caroline's Emergency care in the streets (7th ed.). Buffer systems: Jones & Bartlett Learning. pp. 347–349. ISBN 978-1449645861.
  19. ^ Yeomans ER, Hauth JC, Gilstrap LC, Strickland DM (March 1985). "Umbilical cord pH, PCO2, and bicarbonate following uncomplicated term vaginal deliveries". American Journal of Obstetrics and Gynecology. 151 (6): 798–800. doi:10.1016/0002-9378(85)90523-x. PMID 3919587.
  20. ^ a b Tortora GJ, Derrickson BH (2010). Principles of anatomy and physiology. Derrickson, Bryan. (12th ed.). Hoboken, NJ: John Wiley & Sons. p. 907. ISBN 9780470233474. OCLC 192027371.
  21. ^ Levitzky MG (2013). Pulmonary physiology (Eighth ed.). New York: McGraw-Hill Medical. p. Chapter 9. Control of Breathing. ISBN 978-0-07-179313-1.
  22. ^ Rose B, Rennke H (1994). Renal Pathophysiology. Baltimore: Williams & Wilkins. ISBN 0-683-07354-0.
  23. ^ Grogono AW (April 2019). "Acid-Base Reports Need a Text Explanation". Anesthesiology. 130 (4): 668–669. doi:10.1097/ALN.0000000000002628. PMID 30870214.
  24. ^ a b c Andertson DM (2003). Dorland's illustrated medical dictionary (30th ed.). Philadelphia: Saunders. pp. 17, 49. ISBN 0-7216-0146-4.
  25. ^ Brandis K. "Acid-base physiology". Respiratory acidosis: definition.

Read other articles:

Artikel ini berisi tentang divisi dari divisi Grup Fiat yang memproduksi mobil dengan merek Fiat. Untuk induk perusahaannya, lihat Fiat Fiat Automobiles S.p.A.JenisPrivatIndustriOtomotifDidirikan11 Juli 1899 di Turin, ItaliaPendiriGiovanni AgnelliKantorpusatTurin, ItaliaWilayah operasiInternasionalTokohkunciLuca di Montezemolo (Presiden)Sergio Marchionne (CEO)ProdukMobilIndukStellantisSitus webFiat.com Fiat Grande Punto - Auto Moto Show Katowice 2006. Fiat, akronim dari Fabbrica Italiana Auto...

 

Big BrotherProduksiProduserJohn De MolLokasi produksiVariasiDurasiVariasiRumah produksiEndemolRilis asliJaringanVeronicaRilis16 September 1999 (1999-09-16) –masih disiarkanAcara terkaitCelebrity Big Brother / Big Brother VIP Big Brother adalah acara televisi di mana kelompok orang hidup bersama dalam sebuah rumah besar, terisolasi dari dunia luar, tetapi terus diawasi oleh kamera televisi. Setiap seri berlangsung selama sekitar tiga bulan, dan umumnya ada kurang dari 15 peserta. ...

 

North American blizzard in 2017 ‹ The template Infobox storm is being considered for deletion. › March 2017 North American blizzardCategory 4 Crippling (RSI/NOAA: 10.66)The extratropical cyclone responsible for the blizzard near peak intensity at 18:30 UTC (2:30 p.m. EDT) on March 14, over the U.S. East Coast TypeExtratropical cycloneWinter stormNor'easterBomb cycloneIce stormBlizzardFormedMarch 9, 2017 (2017-03-09)DissipatedMarch 18,...

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Berkas:North American Edison logo.JPG North American Company adalah sebuah perusahaan induk yang didirikan di New Jersey pada tanggal 14 Juni 1890. Perusahaan ini didirikan untuk menggantikan Oregon and Transcontinental Company. Perusahaan yang menjad...

 

История Чукотки восходит к эпохе палеолита. Содержание 1 Чукотка в древности 2 Взаимоотношения Чукотки и Российской империи 3 Чукотка в составе Российской империи 4 Революция на Чукотке 5 Чукотка в cоветский период 6 Чукотский автономный округ в Российской Федерации 7 См. т...

User talk:Koavf archives 001 81 topics (2005-03-05/2006-03-07) 63 kb 002 56 topics (2006-03-07/2006-08-08) 44 kb 003 47 topics (2006-08-08/2006-09-14) 48 kb 004 60 topics (2006-09-14/2007-06-05) 73 kb 005 48 topics (2007-06-05/2007-08-21) 80 kb 006 35 topics (2007-08-21/2007-11-30) 73 kb 007 42 topics (2007-11-30/2008-02-19) 44 kb 008 34 topics (2008-02-19/2008-03-26) 46 kb 009 38 topics (2008-03-26/2008-04-19) 38 kb 010 39 topics (2008-04-19/2008-05-31) 60 kb 011 88 topics (2008-05-31/2008-...

 

For Perley Island in the Sverdrup Islands, see Meighen Island. Uninhabited island in the Canadian Arctic Perley IslandSatellite picture of Perley Island.Perley IslandLocation in NunavutGeographyLocationHudson BayCoordinates59°40′N 80°16′W / 59.667°N 80.267°W / 59.667; -80.267 (Perley Island)ArchipelagoOttawa IslandsArctic ArchipelagoArea45 km2 (17 sq mi)Coastline37 km (23 mi)AdministrationCanadaProvinceNunavutRegionQikiqtaalukDe...

 

Peta yang menunjukkan letak Bokod Data sensus penduduk di Bokod Tahun Populasi Persentase 199510.526—200011.7052.30%200712.9131.36% Bokod adalah munisipalitas di provinsi Benguet, Filipina. Pada tahun 2007, munisipalitas ini memiliki populasi sebesar 12.913 jiwa atau 2.242 rumah tangga. Pembagian wilayah Secara politis Bokod terbagi atas 10 barangay, yaitu: Ambangeg Ambuclao Bila Bobok-Bisal Daclan Ekip Karao Kawal Nawal Pito Poblacion Tikey Sarana pendidikan Beberapa sekolah yang terdapat ...

American professional golfer Billy Hurley IIIHurley aboard the USS Chung-Hoon (DDG-93)Personal informationFull nameWillard Jeremiah Hurley IIIBorn (1982-06-09) June 9, 1982 (age 41)Leesburg, VirginiaHeight5 ft 10 in (1.78 m)Weight170 lb (77 kg; 12 st)Sporting nationality United StatesResidenceAnnapolis, MarylandSpouseHeather HurleyChildren3CareerCollegeUnited States Naval AcademyTurned professional2006Former tour(s)PGA TourWeb.com TourTarheel ...

 

Wrath of the TitansPoster filmSutradaraJonathan LiebesmanProduserBasil IwanykPolly Cohen JohnsenSkenarioDan Mazeau, David Leslie JohnsonCeritaGreg BerlantiDavid Leslie JohnsonDan MazeauBerdasarkanClash of the Titansoleh Beverley CrossPemeranSam WorthingtonRosamund PikeBill NighyÉdgar RamírezToby KebbellDanny HustonRalph FiennesLiam NeesonPenata musikJavier Navarrete[1]SinematograferBen DavisPenyuntingMartin WalshPerusahaanproduksiLegendary PicturesDistributorWarner Bros. Pictu...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of South Korean flags – news · newspapers · books · scholar · JSTOR (August 2016) (Learn how and when to remove this message) This is a list of flags used in South Korea, from 1945 to the present. National flags Main article: Flag of South Korea Flag Date...

SRAM Rival dérailleur avant Campagnolo Super Record dérailleur arrière (1983) Réglage du dérailleur grâce aux deux vis de butée Un dérailleur est une pièce de vélo qui permet le déplacement de la chaîne sur les pignons ou les plateaux pour changer de vitesse, et donc de développement, par démultiplication ou multiplication. La fonction du dérailleur est similaire au sélecteur dans une boîte de vitesses automobile : faire passer l'arbre moteur (ici la chaîne) d'un rappor...

 

بلدة ميتز الإحداثيات 45°15′14″N 83°48′48″W / 45.253888888889°N 83.813333333333°W / 45.253888888889; -83.813333333333   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة بريسك  خصائص جغرافية  المساحة 35.8 ميل مربع  ارتفاع 238 متر  عدد السكان  عدد السكان 280 (1 أ�...

 

Plain formed from glacier sediment transported by meltwater This article is about the glacial geographical feature. For the non-glacier related feature, see Alluvial plain. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (March 2018) (Learn how and when to remove this message) Skeiðarársandur in Iceland, viewed from its eastern margin at the terminus of Sví...

Township in Atlantic County, New Jersey, US For other places with similar names, see Hamilton, New Jersey. Township in New Jersey, United StatesHamilton Township, New JerseyTownshipWeymouth Road Bridge in Hamilton Township SealMotto: New Jersey's Largest MunicipalityLocation of Hamilton Township in Atlantic County highlighted in yellow (left). Inset map: Location of Atlantic County in New Jersey highlighted in black (right).Census Bureau map of Hamilton Township, Atlantic County, New Jer...

 

Rob N RollPoster resmi filmNama lainHanzi Tradisional 臨時劫案 Hanzi Sederhana 临时劫案 Arti harfiahProvisional RobberyHanyu PinyinLín Shí Jié ÀnJyutpingLam4 Si4 Kip3 Ngon3 SutradaraAlbert MakProduserDerek YeeSkenarioAlbert MakRyker ChanMan Uen-ChingPemeranAaron KwokGordon LamRichie JenPenata musikHanz AuIris LiuSinematograferDavy ChouPenyuntingJeff CheungPerusahaanproduksiEntertaining PowerFilm UnlimitedDistributorGala Film DistirbutionTanggal rilis 19 Januari 20...

 

Grooves carved into rock Grooves in a fan-shaped pattern and with one crossing, Gotland, Sweden Grooves, the one at left at the edge of another one, Gotland, Sweden. Cut of a groove measured in a groove on Gotland. A stone with grooves that has been put in the border of a prehistoric grave. The grooves are on the side of the stone. Gotland Grooves on Gotland Grooves in Gantofta, Scania Detail of the grooves in Gantofta There are grooves (Swedish: sliprännor, slipskåror. Sw-En translation: s...

Ancient Greek city An ancient theater in Pleuron (Plevrona), with Mesolongi lagoon in the background. Pleuron (Ancient Greek: Πλευρών, gen.: Πλευρῶνος; Greek: Πλευρώνα, Plevrona or Ασφακοβούνι, Asfakovouni) was a city in ancient Aetolia, Greece. The name refers to two settlements, the older of which was at the foot of Mount Curium between the river Acheloos and the river Evenos,[1] and was mentioned by Homer in the Catalogue of Ships in the Iliad.&#...

 

I fantasmi d'IsmaelTitolo originaleLes Fantômes d'Ismaël Lingua originalefrancese Paese di produzioneFrancia Anno2017 Durata110 min Rapporto2,35:1 Generedrammatico, thriller RegiaArnaud Desplechin SceneggiaturaArnaud Desplechin Casa di produzioneWhy Not Productions Distribuzione in italianoEuropictures FotografiaIrina Lubtchansky MontaggioLaurence Briaud MusicheGrégoire Hetzel Interpreti e personaggi Mathieu Amalric: Ismaël Vuillard Marion Cotillard: Carlotta Bloom Charlotte Gainsbour...