The alpha-7 nicotinic receptor, also known as the α7 receptor, is a type of nicotinic acetylcholine receptor implicated in long-term memory, consisting entirely of α7subunits.[1] As with other nicotinic acetylcholine receptors, functional α7 receptors are pentameric [i.e., (α7)5stoichiometry].
Further, recent work has implicated this receptor as being important for generation of adult mammal neurons in the retina.[2] Functional α7 receptors are present in the submucous plexus neurons of the guinea-pig ileum.[3]
The α7 receptor is highly implicated in the efficacy of Varenicline for smoking cessation therapy significantly more than α4β2 which is responsible for Nicotine's rewarding effects. Upregulation of α7-nAChR's is greatly correlated with a stronger response.[7]
An α7 nicotinic agonist appears to have positive effects on neurocognition in persons with schizophrenia.[8]
Activation of α7 nicotinic acetylcholine receptor on mast cells, is a mechanism by which nicotine enhances atherosclerosis.[9]
NS-1738: marginal effects on α7 desensitization kinetics; modestly brain-penetrant[32]
AVL-3288: unlike the above PAMs, AVL-3288 does not affect α7 desensitization kinetics, and is readily brain penetrant. Improves cognitive behavior in animal models[33] In clinical development for cognitive deficits in schizophrenia.
It is found that anandamide and ethanol cause an additive inhibition on the function of α7-receptor by interacting with distinct regions of the receptor. Although ethanol inhibition of the α7-receptor is likely to involve the N-terminal region of the receptor, the site of action for anandamide is located in the transmembrane and carboxyl-terminal domains of the receptors.[39]
^Glushakov AV, Voytenko LP, Skok MV, Skok V (January 2004). "Distribution of neuronal nicotinic acetylcholine receptors containing different alpha-subunits in the submucosal plexus of the guinea-pig". Autonomic Neuroscience. 110 (1): 19–26. doi:10.1016/j.autneu.2003.08.012. PMID14766321. S2CID25872540.
^Brown KC, Lau JK, Dom AM, Witte TR, Luo H, Crabtree CM, et al. (March 2012). "MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway". Angiogenesis. 15 (1): 99–114. doi:10.1007/s10456-011-9246-9. PMID22198237. S2CID17889977.
^Marrero MB, Papke RL, Bhatti BS, Shaw S, Bencherif M (April 2004). "The neuroprotective effect of 2-(3-pyridyl)-1-azabicyclo[3.2.2]nonane (TC-1698), a novel alpha7 ligand, is prevented through angiotensin II activation of a tyrosine phosphatase". The Journal of Pharmacology and Experimental Therapeutics. 309 (1): 16–27. CiteSeerX10.1.1.420.2457. doi:10.1124/jpet.103.061655. PMID14722323. S2CID7730290.
^Preskorn SH, Gawryl M, Dgetluck N, Palfreyman M, Bauer LO, Hilt DC (January 2014). "Normalizing effects of EVP-6124, an α-7 nicotinic partial agonist, on event-related potentials and cognition: a proof of concept, randomized trial in patients with schizophrenia". Journal of Psychiatric Practice. 20 (1): 12–24. doi:10.1097/01.pra.0000442935.15833.c5. PMID24419307. S2CID19669958.
^ abSadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D (July 2015). "Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25-35-mediated cognitive deficits in mice". Neuroscience. 298: 81–93. doi:10.1016/j.neuroscience.2015.04.017. PMID25881725. S2CID22477612.
^Bali ZK, Inkeller J, Csurgyók R, Bruszt N, Horváth H, Hernádi I (February 2015). "Differential effects of α7 nicotinic receptor agonist PHA-543613 on spatial memory performance of rats in two distinct pharmacological dementia models". Behavioural Brain Research. 278: 404–10. doi:10.1016/j.bbr.2014.10.030. PMID25447295. S2CID10791918.
^Acker BA, Jacobsen EJ, Rogers BN, Wishka DG, Reitz SC, Piotrowski DW, et al. (June 2008). "Discovery of N-[(3R,5R)-1-azabicyclo[3.2.1]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide as an agonist of the alpha7 nicotinic acetylcholine receptor: in vitro and in vivo activity". Bioorganic & Medicinal Chemistry Letters. 18 (12): 3611–5. doi:10.1016/j.bmcl.2008.04.070. PMID18490160.
^Walker DP, Wishka DG, Piotrowski DW, Jia S, Reitz SC, Yates KM, et al. (December 2006). "Design, synthesis, structure-activity relationship, and in vivo activity of azabicyclic aryl amides as alpha7 nicotinic acetylcholine receptor agonists". Bioorganic & Medicinal Chemistry. 14 (24): 8219–48. doi:10.1016/j.bmc.2006.09.019. PMID17011782.
^Macor JE, Gurley D, Lanthorn T, Loch J, Mack RA, Mullen G, et al. (February 2001). "The 5-HT3 antagonist tropisetron (ICS 205-930) is a potent and selective alpha7 nicotinic receptor partial agonist". Bioorganic & Medicinal Chemistry Letters. 11 (3): 319–21. doi:10.1016/S0960-894X(00)00670-3. PMID11212100.
^Dallanoce C, Matera C, De Amici M, Rizzi L, Pucci L, Gotti C, Clementi F, De Micheli C (July 2012). "The enantiomers of epiboxidine and of two related analogs: synthesis and estimation of their binding affinity at α4β2 and α7 neuronal nicotinic acetylcholine receptors". Chirality. 24 (7): 543–51. doi:10.1002/chir.22052. PMID22566097.
^González-Rubio, Juana M; Rojo, Jonathan; Tapia, Laura; Maneu, Victoria; Mulet, José; Valor, Luis M.; Criado, Manuel; Sala, Francisco; García, Antonio G. (2004). "Choline as a tool to evaluate nicotinic receptor function in chromaffin cells"(PDF). In Borges, R.; Gandía, L. (eds.). Cell Biology of the Chromaffin Cell. Luis Gandía. Spain: Instituto Teófilo Hernando.
^Dallanoce C, Magrone P, Matera C, Frigerio F, Grazioso G, De Amici M, et al. (May 2011). "Design, synthesis, and pharmacological characterization of novel spirocyclic quinuclidinyl-Δ2-isoxazoline derivatives as potent and selective agonists of α7 nicotinic acetylcholine receptors". ChemMedChem. 6 (5): 889–903. doi:10.1002/cmdc.201000514. PMID21365765. S2CID21407917.
^Grønlien JH, Håkerud M, Ween H, Thorin-Hagene K, Briggs CA, Gopalakrishnan M, Malysz J (September 2007). "Distinct profiles of alpha7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes". Molecular Pharmacology. 72 (3): 715–24. doi:10.1124/mol.107.035410. PMID17565004. S2CID2460247.
^Timmermann DB, Grønlien JH, Kohlhaas KL, Nielsen EØ, Dam E, Jørgensen TD, et al. (October 2007). "An allosteric modulator of the alpha7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo". The Journal of Pharmacology and Experimental Therapeutics. 323 (1): 294–307. doi:10.1124/jpet.107.120436. PMID17625074. S2CID35392171.
^Faghih R, Gopalakrishnan SM, Gronlien JH, Malysz J, Briggs CA, Wetterstrand C, et al. (May 2009). "Discovery of 4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl)benzenesulfonamide (A-867744) as a novel positive allosteric modulator of the alpha7 nicotinic acetylcholine receptor". Journal of Medicinal Chemistry. 52 (10): 3377–84. doi:10.1021/jm9003818. PMID19419141.
^Malysz J, Grønlien JH, Anderson DJ, Håkerud M, Thorin-Hagene K, Ween H, et al. (July 2009). "In vitro pharmacological characterization of a novel allosteric modulator of alpha 7 neuronal acetylcholine receptor, 4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl)benzenesulfonamide (A-867744), exhibiting unique pharmacological profile". The Journal of Pharmacology and Experimental Therapeutics. 330 (1): 257–67. doi:10.1124/jpet.109.151886. PMID19389923. S2CID5470552.
^Nishizaki T, Nomura T, Matuoka T, Kondoh T, Enikolopov G, Enikolopo G, Sumikawa K, Watabe S, Shiotani T, Yoshii M (August 2000). "The anti-dementia drug nefiracetam facilitates hippocampal synaptic transmission by functionally targeting presynaptic nicotinic ACh receptors". Brain Research. Molecular Brain Research. 80 (1): 53–62. doi:10.1016/S0169-328X(00)00117-0. PMID11039729.
^Zhao X, Kuryatov A, Lindstrom JM, Yeh JZ, Narahashi T (April 2001). "Nootropic drug modulation of neuronal nicotinic acetylcholine receptors in rat cortical neurons". Molecular Pharmacology. 59 (4): 674–83. doi:10.1124/mol.59.4.674. PMID11259610. S2CID27825145.
^Nishizaki T, Matsuoka T, Nomura T, Kondoh T, Watabe S, Shiotani T, Yoshii M (2000). "Presynaptic nicotinic acetylcholine receptors as a functional target of nefiracetam in inducing a long-lasting facilitation of hippocampal neurotransmission". Alzheimer Disease and Associated Disorders. 14 (Suppl 1): S82–94. doi:10.1097/00002093-200000001-00013. PMID10850735. S2CID25914087.
^Oz M, Jackson SN, Woods AS, Morales M, Zhang L (June 2005). "Additive effects of endogenous cannabinoid anandamide and ethanol on alpha7-nicotinic acetylcholine receptor-mediated responses in Xenopus Oocytes". The Journal of Pharmacology and Experimental Therapeutics. 313 (3): 1272–80. doi:10.1124/jpet.104.081315. PMID15687372. S2CID23201726.
^Whiteaker P, Christensen S, Yoshikami D, Dowell C, Watkins M, Gulyas J, et al. (June 2007). "Discovery, synthesis, and structure activity of a highly selective alpha7 nicotinic acetylcholine receptor antagonist". Biochemistry. 46 (22): 6628–38. doi:10.1021/bi7004202. PMID17497892.
^Sharma, Charu; Al Kaabi, Juma M.; Nurulain, Syed M.; Goyal, Sameer N.; Kamal, Mohammad Amjad; Ojha, Shreesh (2016). "Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: A Dietary Phytocannabinoid of Pharmaceutical Promise". Current Pharmaceutical Design. 22 (21): 3237–64. doi:10.2174/1381612822666160311115226. ISSN1873-4286. PMID26965491.
^Tsuneki H, You Y, Toyooka N, Kagawa S, Kobayashi S, Sasaoka T, et al. (October 2004). "Alkaloids indolizidine 235B', quinolizidine 1-epi-207I, and the tricyclic 205B are potent and selective noncompetitive inhibitors of nicotinic acetylcholine receptors". Molecular Pharmacology. 66 (4): 1061–9. doi:10.1124/mol.104.000729. PMID15258256. S2CID17490742.