SageMath
SageMath(曾叫做Sage或SAGE,为“System for Algebra and Geometry Experimentation”的首字母缩写[2]),是一个覆盖许多数学功能的应用软件,包括代数、组合数学、图论、计算数学、数论、微积分和统计。 SAGE的第一个版本在GNU许可证下发布于2005年2月24日,最初的目标是创造一个“Magma、Maple、Mathematica和MATLAB的开源替代品”。Sage的主导开发人员威廉·斯坦因是华盛顿大学的数学家。 功能![]() ![]() Sage的功能包括[3]
虽然不是Sage直接提供的功能,但Sage可以从Mathematica内部调用。Mathematica的一个记事本可用于此。 设计理念威廉.斯坦在设计Sage时意识到了有不同的语言(包括有C 、C++、Fortran和Python)编写的大量现成的大型开源数学软件可用。 因此,Sage(用Python和Cython实现的)将所有专用的数学软件集成到一个通用的接口而不是从头开发。用户只需要了解Python。 Sage由学生和专业人士开发。Sage的开发由志愿工作和赠款支持。 [4] 性能二进制包和源代码都可以从Sage页面下载。如果从源代码构建,许多包含的库如Atlas、FLINT和NTL和都会针对该计算机考虑到处理器数量,缓存大小的,是否有硬件支持SSE指令等进行调整和优化。 许可和可用性Sage在GNU通用公共许可证2+下自由软件条款下发布 。Sage可通过多种方式获得:
Sage包含的软件包如上所述,SAGE的理念是利用现有的任何开放源码库。因此,借用了许多项目。
語言範例微积分x,a,b,c = var('x,a,b,c')
log(sqrt(a)).simplify_log() # returns log(a)/2
sin(a+b).simplify_trig() # returns cos(a)*sin(b) + sin(a)*cos(b)
cos(a+b).simplify_trig() # returns cos(a)*cos(b) - sin(a)*sin(b)
limit((xˆ2+1)/(2+x+3*xˆ2), x=infinity) # returns 1/3
limit(sin(x)/x, x=0) # returns 1
diff(acos(x),x) # returns -1/sqrt(1 - xˆ2)
f = exp(x)*log(x)
f.diff(x,3) # returns e^x*log(x) + 3*e^x/x - 3*e^x/x^2 + 2*e^x/x^3
solve(a*x^2 + b*x + c, x) # returns [x == (-sqrt(b^2 - 4*a*c) - b)/(2*a),
# x == (sqrt(b^2 - 4*a*c) - b)/(2*a)]
微分方程t = var('t') # define a variable t
x = function('x',t) # define x to be a function of that variable
DE = lambda y: diff(y,t) + y - 1
desolve(DE(x(t)), [x,t]) # returns '%e^-t*(%e^t+%c)'
线性代数A = Matrix([[1,2,3],[3,2,1],[1,1,1]])
y = vector([0,-4,-1])
A.solve_right(y) # returns (-2, 1, 0)
A.eigenvalues() # returns [5, 0, -1]
B = Matrix([[1,2,3],[3,2,1],[1,2,1]])
B.inverse() # returns [ 0 1/2 -1/2]
# [-1/4 -1/4 1]
# [ 1/2 0 -1/2]
# Call numpy for the Moore-Penrose pseudo-inverse,
# since Sage does not support that yet.
import numpy
C = Matrix([[1 , 1], [2 , 2]])
matrix(numpy.linalg.pinv(C.numpy())) # returns [0.1 0.2]
# [0.1 0.2]
数论prime_pi(1000000) # returns 78498, the number of primes less than one million
E = EllipticCurve('389a') # construct an elliptic curve from its Cremona label
P, Q = E.gens()
7*P + Q # returns (2869/676 : -171989/17576 : 1)
历史只列出了主要发布版本。Sage采用的“早发布,常发布”的理念,每两至三个星期发布一次。[6]
2007年,Sage赢得自由软件的国际竞争中科学软件部分的Les Trophées du Libre首奖。 [7] 参见参考文献
外部链接 |