Read other articles:

Eduardo Camaño Acting Head of the Executive Branch of ArgentinaMasa jabatanDecember 31, 2001 – January 2, 2002 PendahuluAdolfo Rodríguez SaáPenggantiEduardo Duhalde Informasi pribadiLahir17 Juni 1946 (umur 77)Buenos AiresKebangsaanArgentinePartai politikJusticialistProfesiLawyerTanda tanganSunting kotak info • L • B Eduardo Camano (lahir 17 Juni 1946) adalah seorang Presiden Argentina periode 2001-2002. Artikel bertopik politikus ini adalah sebuah rintisan. An...

 

Aspect of modern historyNot to be confused with Copyright infringement.Suspected pirates assemble on the deck of a dhow near waters off of western Malaysia, January 2006. Piracy in the 21st century (commonly known as modern piracy) has taken place in a number of waters around the world, including the Gulf of Guinea, Strait of Malacca, Sulu and Celebes Seas, Indian Ocean, and Falcon Lake. Waters Caribbean Further information: Piracy off the coast of Venezuela Gasoline smuggling in the Limón R...

 

31°10′N 29°53′E / 31.167°N 29.883°E / 31.167; 29.883 محافظة الإسكندرية عروس البحر الأبيض المتوسط محافظة مصرية علمعلم شعارشعار الموقع في جمهورية مصر العربيةالموقع في جمهورية مصر العربية تقسيم إداري العاصمة الإسكندرية عدد المدن 3 مدن عدد المراكز مركز واحد عدد الأحياء 9 أحياء الح�...

LandoAwal masa jabatanJuli/Agustus 913Masa jabatan berakhirFebruari/Maret 914PendahuluAnastasius IIIPenerusYohanes XInformasi pribadiNama lahirLandoLahirtanggal tidak diketahuiSabina, ItaliaWafatFebruari/Maret 914Roma, Italia Paus Lando, nama lahir Lando (???-Februari/Maret 914), adalah Paus Gereja Katolik Roma sejak Juli/Agustus 913 hingga Februari/Maret 914. Didahului oleh:Anastasius III Paus913 – 914 Diteruskan oleh:Yohanes X lbs Paus Gereja Katolik Daftar paus grafik masa jabatan o...

 

Argentine-Chilean football manager and player Hernán Caputto Caputto with Universidad de Chile in 2020.Personal informationFull name Héctor Hernán Caputto GómezDate of birth (1974-10-06) October 6, 1974 (age 49)Place of birth San Andrés de Giles, Buenos Aires, ArgentinaHeight 1.84 m (6 ft 0 in)Position(s) GoalkeeperYouth career PlatenseSenior career*Years Team Apps (Gls)1989–1993 Platense 1995–1997 Tigre 26 (0)1997–1999 Provincial Osorno 97 (0)2000–2003 Unión...

 

Basilika Dikandung Tanpa NodaBasilika Minor Dikandung Tanpa Nodabahasa Polandia: Bazylika na Świętej GórzeBasilika Dikandung Tanpa NodaLokasiŚwięta GóraNegara PolandiaDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktif Basilika Dikandung Tanpa Noda (bahasa Polandia: Bazylika na Świętej Górze) adalah sebuah gereja basilika minor Katolik yang terletak di Święta Góra, Polandia. Basilika ini ditetapkan statusnya pada 1970 dan didedikasikan ke...

Not to be confused with Made in Japan. 2014 studio album by Band-MaidMaid in JapanStudio album by Band-MaidReleasedJanuary 8, 2014Recorded2013Length30:24 (original), 38:06 (reissue)LanguageJapaneseLabelGump, Crown StonesBand-Maid chronology Maid in Japan(2014) New Beginning(2015) 2018 reissue cover Maid in Japan is the debut mini-album[1] by Japanese all-female rock band Band-Maid (stylized as BAND-MAID®). It was released on January 8, 2014.[2] The album did not chart...

 

Digital network in which two nodes establish a channel through the network before they communicate This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2009) (Learn how and when to remove this template message) Circuit switching is a method of implementing a telecommunications network in which two network nodes establish a dedicated communications channel (ci...

 

Musical instruments, commonly flutes, made of bamboo This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bamboo musical instruments – news · newspapers · books · scholar · JSTOR (August 2023) (Learn how and when to remove this template message) Wind instruments made of bamboo played by students in Talaud, North ...

Ираклеониты — ученики гностика Ираклеона (II век). Упоминаются как особая секта Епифанием и Августином; при крещении и миропомазании они соблюдали обряд помазания елеем и при этом произносили воззвания на арамейском языке, которые должны были освободить душу от власт�...

 

Distinctive Single Whip Stance of Guang Ping Yang tai chi Guang Ping Yang tai chi (Chinese: 廣平楊氏太极拳; pinyin: Guǎngpíng Yángshì tàijíquán) is a tai chi style descended from Yang-style tai chi. It claims to combine all the positive aspects of Yang-style with qualities that added strength and versatility. It's stances are lower and wider than Yang-style, but not as pronounced as Chen-style. Guang Ping is also distinguished by as little as a 51%/49% weight difference ...

 

American handball player Tom Schneeberger Personal informationFull name Thomas SchneebergerBorn (1956-05-18) May 18, 1956 (age 67)Ann Arbor, Michigan, United StatesHeight 210 cm (6 ft 11 in)Club informationCurrent club retiredSenior clubsYears Team Air Force FalconsNational teamYears Team1976-1987 United States Medal record Men's handball Representing the  United States Pan American Games 1987 Indianapolis Men's handball Basketball careerCareer informationHigh schoolP...

Street in Chicago Montrose AvenueMontrose Avenue crossing under Metra's Union Pacific North Line (2010)LocationWood Dale, Schiller Park, Norridge, Harwood Heights, ChicagoWest endMill Road in Wood DaleEast endSimonds Drive/Montrose Harbor Drive in Chicago Montrose Avenue is a street in Chicago. Located 5.5 miles (8.9 km) north of Madison Street, it is 4400N in Chicago's grid system. It is served by stations on the Chicago Transit Authority (CTA)'s Brown Line and Blue Line and M...

 

  لمعانٍ أخرى، طالع معركة القريتين (توضيح). معركة القريتين (مارس–أبريل 2016) جزء من الحرب الأهلية السورية معلومات عامة التاريخ 3 مارس – 3 أبريل 2016(شهرًا واحدًا) البلد سوريا  الموقع القريتين، محافظة حمص، سوريا34°14′00″N 37°14′00″E / 34.2333°N 37.2333°E / 34.2333; 37.2333   ال�...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

Chinese born-American actress and author (1919–2015) Jayne MeadowsMeadows in the 1940sBornJane Cotter(1919-09-27)September 27, 1919Wuchang District, Wuhan, ChinaDiedApril 26, 2015(2015-04-26) (aged 95)Encino, Los Angeles, California, U.S.Resting placeForest Lawn Memorial Park, Hollywood Hills, CaliforniaOccupation(s)Actress, authorYears active1941–2009Known forUndercurrentSong of the Thin ManDavid and BathshebaEnchantmentLady in the LakePolitical partyRepublicanSpouses Milt...

 

《2020年台灣保證法》(英語:Taiwan Assurance Act of 2020),是一部美国法律。為《2021年綜合撥款法》的第FF部第III篇B分篇的別稱。 歷史 立法過程 《2019年台灣保證法》於2019年3月26日和4月1日分別於美國參、眾兩院由湯姆·卡頓和麥克·麥考爾提出。後者的版本於2019年5月7日獲美國眾議院全票通過。[1][2][3] 2020年12月21日,法案條文被納入《2021年綜合撥款法》的�...

 

Statutory office and the head of the U.S. Department of the Navy Not to be confused with Chief of Naval Operations. Secretary of the NavySeal of the Department of the NavyFlag of the secretaryIncumbentCarlos Del Torosince 9 August 2021Department of the NavyStyleMister SecretaryThe Honorable (formally)AbbreviationSECNAVReports toSecretary of DefenseDeputy Secretary of DefenseAppointerThe President,with Senate advice and consentConstituting instrument10 U.S.C. § 8013Formati...

Cuban composer (1896–1963) For Ernesto's older sister, see Ernestina Lecuona. In this Spanish name, the first or paternal surname is Lecuona and the second or maternal family name is Casado. Ernesto Lecuonacirca 1935 Ernesto Lecuona y Casado (Spanish pronunciation: [eɾˈnesto leˈkwona]; August 7, 1896[1] – November 29, 1963)[2] was a Cuban composer and pianist, many of whose works have become standards of the Latin, jazz and classical repertoires. His ove...

 

الموثوقية في الإحصاء والقياسات النفسية هي التطابق العام للقياس.[1] يُقال إن المقياس يتمتع بموثوقية عالية في حال نتج عنه نتائج مماثلة في ظل ظروف ثابتة. «إنّه خصائص مجموعة من درجات الاختبار التي تتعلق بكمية الخطأ العشوائي لعملية القياس والتي قد تكون مضمّنة في الدرجات. ال...