Функціональний аналіз як самостійна дисципліна розвивався на межі 19 і 20 століття й остаточно сформувався у 20-30 рр. 20 століття. З одного боку, він розвинувся під впливом дослідження конкретних класів лінійних операторів — інтегральних операторів і пов'язаних з ними інтегральних рівнянь, з другого боку — під впливом чисто внутрішнього розвитку сучасної математики з її бажанням узагальнити і тим самим пізнати істинну природу тих чи тих закономірностей. Величезний вплив на розвиток функціонального аналізу мала квантова механіка, оскільки в ній вимірюваним фізичним величинам відповідають лінійні оператори над простором станів фізичної системи.
Поняття простору
Найзагальнішими просторами, що фігурують в функціональному аналізі є топологічні векторні простори. Так називається векторний (лінійний) простір над полем комплексних чисел(або дійсних). На просторі може бути введена метрика — дійсна функція від двох аргументів, що належать цьому простору, результатом якої є «відстань» між цими елементами. Слово відстань використане тут в непрямому розумінні. Простір з метрикою називається метричним простором. Також відрізняють простори, на яких аксіоматично визначена норма елементу — «довжина» вектора x, ||x||. На нормованому просторі завжди можна ввести метрику у вигляді f(x, y)=||x-y||. Також у просторі можна визначити операцію скалярного добутку яку геометрично можна інтерпретувати як кут між елементами. Простори зі скалярним добутком називаються унітарними. Скалярний добуток породжує норму в просторі таким чином: ||x||2=(x, x). Простір який є повним відносно норми породженої скалярним добутком цього простору називається гільбертовим простором.
«Вимірність» простору — максимальна кількість лінійно-незалежних елементів у цьому просторі. Безмежновимірний простір це простір, у якому для будь-якого натурального числаn існує nлінійно-незалежних елементів.
Функціонал
Функціонал — це відображення, що ставить у відповідність кожному елементу даного простору елемент з простору дійсних або комплексних чисел. Важливу роль в функціональному аналізі відіграють поняття неперервних функціоналів і лінійних функціоналів. Простір всіх лінійних обмежених і всюди визначених на просторі Х функціоналів називається спряженим до Х і позначається Х' або Х*.
Оператор
Оператор — відображення, що ставить у відповідність елемент одного простору елементу з іншого. L(X, Y) — простір всіх лінійних, неперервних, всюди визначених в Х операторів. Переважно розглядаються випадки коли X i Y — нормовані або гільбертові простори. Оператор називається спряженим до оператора А і позначається А* якщо (А х, y)=(x, A* y).
Дуже важливим є клас самоспряжених операторів — (A x, y)=(x, A y).
Березанський Ю. М., Ус Г. Ф., Шефтель В. Г. Функціональний аналіз : курс лекцій. — Львів : І.Е. Чижиков, 2014. — 560 с.(укр.) (оригінал (рос.), див. нижче)
Колмогоров А.М., Фомін С. В. Елементи теорії функцій та функціонального аналізу. — Київ : Вища школа, 1974. — 456 с. (так само: Київ, Наукова думка, 1977. — 578 с.) (укр.) (оригінал (рос.), див. нижче)
Іншими мовами
Erwin Kreyszig. Introductory Functional Analysis with Applications. — 1. — Wiley, 1989. — 704 с. — ISBN 978-0471504597.(англ.)
George Bachman, Lawrence Narici. Functional Analysis. — 2. — Dover Publications, 1998. — 544 с. — ISBN 978-0486402512.(англ.)
Walter Rudin. Functional Analysis. — 2. — McGraw-Hill Science/Engineering/Math, 1995. — 448 с. — ISBN 978-0789625458.(англ.)
Michael Reed, Barry Simon. Functional Analysis. — Academic Press, 1980. — Т. 1 Methods of Modern Mathematical Physics. — 400 с. — ISBN 978-0125850506.(англ.)
Peter D. Lax. Functional Analysis. — 1. — Wiley-Interscience, 2002. — 608 с. — ISBN 978-0471556046.(англ.)
Kôsaku Yosida. Classics in Mathematics // Functional analysis. — 6th Edition. — Springer, 1995. — 501 с. — ISBN 978-3540586548.(англ.)
Люстерник Л. А., Соболев В. И. Элементы функционального анализа. — М. : Наука, 1965. — 520 с.(рос.)
Рисс Ф., Сёкефальви-Надь Б. Лекции по функциональному анализу = Leçons d'analyse fonctionelle. — М. : Мир, 1979. — 588 с.(рос.) (оригінал (фр.))
Хелемский А. Я. Лекции по функциональному анализу. — М. : МЦНМО, 2004. — 552 с.(рос.)
Эдвардс Р. Функциональный анализ: Теория и приложения = Functional Analysis: Theory and Applications. — М. : Мир, 1969. — 1070 с.(рос.) (оригінал (англ.))