Кільце симетричних функцій[en] є своєрідною границею кілець симетричних многочленів від n змінних при n, що прямує до нескінченності. Це кільце слугує універсальною структурою, в якій зв'язки між симетричними многочленами можна виразити без прив'язки до числа змінних (але елементи кільця не є ні многочленами, ні функціями). Крім усього іншого, це кільце відіграє важливу роль у теории представлений симметрических групп[en].
Будь-які дві несуміжні вершини мають μ спільних сусідів.
Графи такого виду іноді позначаються srg(v, k, λ, μ).
Деякі автори виключають графи, які відповідають визначенню тривіально, а саме ті графи, які є об'єднанням (одного і більше) однакових повних графів[6][7], і їх доповнення, що не перетинаються, графи Турана.
Матроїд — це структура, яка вбирає й узагальнює поняття лінійної незалежності у векторних просторах. Є багато еквівалентних шляхів визначення матроїда, і найважливіші з них — у термінах незалежних множин, баз, замкнених множин чи площин, операторів замикання і функцій рангу.
Звичайна евклідова геометрія не є скінченною, оскільки евклідова пряма містить нескінченно багато точок. Геометрію, засновану на графіці комп'ютерного екрана, де пікселі вважаються точками, можна вважати скінченною геометрією. Хоча існує багато систем, які можна було б вважати скінченними геометріями, переважно увагу приділяють скінченним проєктивним і афінним просторам зважаючи на їх регулярність і простоту. Інші суттєві типи скінченних геометрій — скінченні площини Мебіуса або інверсні площині та площини Лагерра[en], які є прикладами більш загальних об'єктів, званих площинами Бенца[en], і їх аналогами у вищих розмірностях, таких як скінченні інверсійні геометрії[en].
Скінченні геометрії можна побудувати за допомогою лінійної алгебри, починаючи з векторних просторів над скінченними полями. Афінні і проєктивні площини, побудовані таким чином, називають геометріями Галуа. Скінченні геометрії можна також визначити чисто аксіоматично. Найпоширеніші скінченні геометрії — геометрії Галуа, оскільки будь-який скінченний проєктивний простір розмірності три і більше ізоморфний проєктивному простору над скінченним полем. Проте в розмірності два є афінні і проєктивні площини, які не ізоморфні геометріям Галуа, а саме, недезаргові площини. Схожі результати мають місце для інших видів скінченних геометрій.
Eiichi Bannai, Tatsuro Ito. Algebraic combinatorics I: Association schemes. — Menlo Park, CA : The Benjamin/Cummings Publishing Co., Inc, 1984. — С. xxiv+425. — ISBN 0-8053-0490-8.
Chris Godsil, Gordon Royle. Algebraic Graph Theory. — New York : Springer-Verlag, 2001. — Т. 207. — (Graduate Texts in Mathematics) — ISBN 0-387-95220-9.
C. D. Godsil. Algebraic Combinatorics. — New York : Chapman and Hall, 1993. — ISBN 0-412-04131-6.
Takayuki Hibi. Algebraic combinatorics on convex polytopes. — Glebe, Australia : Carslaw Publications, 1992.
Melvin Hochster[en]. Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975). — New York : Dekker, 1977. — Т. 26. — С. 171—223. — (Lecture Notes in Pure and Appl. Math.)
Richard Stanley. Combinatorics and commutative algebra. — 2nd. — Boston, MA : Birkhäuser, 1996. — Т. 41. — (Progress in Mathematics) — ISBN 0-8176-3836-9.
Zieschang, Paul-Hermann (2005b), Theory of association schemes, Springer, с. xii+283, ISBN3-540-26136-2
Zieschang, Paul-Hermann (2006), The exchange condition for association schemes, Israel Journal of Mathematics, 151 (3): 357—380, doi:10.1007/BF02777367, ISSN0021-2172, MR2214129