Majkelson—Morlijev eksperiment, izveden krajem devetnaestog veka, pokazao je da brzina svetlosti ne zavisi od brzine kretanja posmatrača i izvora svetlosti. To je u narednih nekoliko decenija dovelo do revolucije u mehanici. Rezultat Majkeslon-Morlijev ogleda je bio u direktnoj suprotnosti sa klasičnim (Galilejevim) zakonom sabiranja svetlosti, koji su zamenjeni Lorencovim transformacijama.
Formule
Lorentzove transformacije povezuju koordinate (x, y, z, t) nekog događaja u mirnome sustavu S (x, y, z, t) s pripadajućim koordinatama (x', y', z', t' ) u sustavu S' (x', y', z', t' ) koji se prema sustavu S giba uzduž osi x stalnom brzinomv. Polazeći od toga da svjetlosni signali putuju brzinom c u oba sustava i da se pravocrtna gibanja kao takva iz jednoga vide u drugom sustavu i obratno (x = c∙t i x' = c∙t' ), kao i od načela relativnosti (zamjene uloge sustava S i S' i koordinata u njima), dobivaju se uz odgovarajući algebarski formalizam Lorentzove transformacije u obliku:
Neke posledice koje slede iz Lorencovih transformacija su: kontrakcija dužine, dilatacija vremena, promena zakona slaganja brzina, izmena Njutnovih zakona, povećanje mase sa brzinom i ekvivalentnost mase i energije. Ove posledice su neobične sa aspekta nerelativističke fizike i nemoguće im je naći analogiju u nerelativističkoj fizici.
Kontrakcija dužina. Telo nema stalnu dužinu, ona zavisi od izbora referentnog sistema, odnosno od brzine tog tela u odnosu na taj inercijalni referentni sistem.
Dilatacija vremena. Vremenski interval između dva ista događaja zavisi od izbora referentnog sistema, odnosno zavisi od brzine inercijalnog referentnog sistema u odnosu na sistem u kojem se događaji dešavaju.
Zakon slaganja brzina u relativističkoj fizici je izmenjen u odnosu na onaj u klasičnoj mehanici(kao što je i opisano u prethodnom primeru,
Drugi Njutnov zakon u obliku , ne važi u relativističkoj fizici. S druge strane, tačan je njegov zapis kojim se sila definiše kao promena impulsa u vremenu.
Povećanje mase sa brzinom. Masa, po originalnoj specijalnoj teoriji relativnosti raste sa brzinom. Po modernom shvatanju to nije sasvim tako.[2] Ipak račun u kojem se uzima da masa na taj način zavisi od brzine daje sasvim korektne rezultate, pa je stoga u literaturi i dalje prilično zastupljeno ovo tvrđenje.
Neka se sistem od dva ogledala od kojih se naizmenično odbija foton kreće brzinom u odnosu na sistem koji je u stanju relativnog mirovanja i neka je rastojanje između tih ogledala L. Za posmatrača u pokretnom sistemu vreme koje protekne između dva sudara sa istim ogledalom je:
Posmatrač koji se nalazi u stanju relativnog mirovanja smatra da je put koji mora da pređe foton u stvari veći iznosi D. Ovde dolazi do razilaženja relativističke i klasične fizike koje je odlična ilustracija njihove opšte razlike. Prema klasičnom shvatanju isto je vreme za koje foton prelazi taj put, a različita je brzina. Relativistički gledano brzina je ista, a vreme različito. Stoga možemo pisati:
S obzirom da je ova formula govori da je vreme koje pokazuje pokretan sat manje od onog koje pokazuje onaj koji je u stanju relativnog mirovanja. To bi značilo da ako čovek na svemirskom brodu odleti u kosmos i provede tamo određen broj godina kada se bude vratio na Zemlji će proći više godina nego što je on proveo u kosmosu! Ovaj efekat daje mogućnost perspektive vremenskih putovanja, koja je ipak, pre svega teorijska.
Takvo vremensko putovanje je praktično neizvodljivo, jer zahteva veliki utrošak energije, najpre da bi se brod ubrzao do brzine na kojoj se relativistički efekti jasnije projavljuju, a zatim i za zaustavljanje, i slične promene u kretanju. Takođe čovek ne bi mogao dugo da izdrži veliko ubrzanje kakvo bi bilo potrebno za taj poduhvat. U suštini je drugi nedostatak manje važan od prvog, jer se i kretanjem od dve-tri godine pod konstantnim ubrzanjem g (jednakom onom Zemljine teže) postiže sasvim primetna vremenska razlika. Ipak, prvi je dovoljno veliki da onemogući ostvarenje ovakvog projekta. U savremenoj nauci postoje još neke ideje zasnovane na opštoj teoriji relativnosti o vremenskim putovanjima, ali one već izlaze iz okvira posebne teorija relativnosti.
Korišćenjem Lorencovih transformacija može se dokazati da je dužina tela u sopstvenom sistemu uvek veća nego u sistemu u odnosu na koji se to telo kreće.
U inercijalnom sistemu S' su i krajnje tačke štapa dužine koji se nalazi u stanju relativnog mirovanja. Koristeći Lorencove transformacije može se pisati:
und
Štap se kreće u drugom inercijalnom refentnom sistemu S. Njegova dužina u istom je određena koordinatama njegove početne i krajnje tačke u istom trenutku sa stanovišta tog sistema. Stoga se nalazi:
i i
(1)
Na taj način se dobija konačna formula koja povezuje dužine u ova dva referentna sistema:
(2)
Ova formula dokazuje da ako se telo kreće u datom inercijalnom refentnom sistemu njegova dužina se skraćuje, što se naziva kontrakcijom dužine. Ako čovek stoji pored pruge, a pored njega prođe voz brzinom približno jednakoj brzini svetlosti onda će mu voz izgledati mnogo kraćim nego za putnika koji je u vozu. U praksi su ti efekti nemerljivi i jasno se projavljuju se tek pri pri brzinama većim od od 0,5c[3].
Prema specijalnoj teoriji relativiteta, vreme nije apsolutno kao u do tada zastupljenom shvatanju. Događaji koji su sa stanovišta jednog posmatrača istovremeni nisu to i za drugog posmatrača. Događaji ponekad čak mogu da promene redosled.
Jedan primer kojim se relativnost istovremenosti može ilustrovati je sledeći:
U sredini svemirskog broda koji se kreće kroz otvoren kosmos je sijalica koja se pali. Na krajevima broda se nalaze dva kosmonauta koji mere vreme za koje će svetlost do njih stići. Ukoliko su časovnici sinhronizovani u početku, oni će pokazivati isto vreme, tj. Svetlost će do njih stići istovremeno.
Ukoliko isti primer posmatramo iz drugog sistema referencije koji je u stanju relativnog mirovanja i u odnosu na koji se taj brod kreće, događaji neće biti istovremeni, jer se jedan od kosmonauta približava izvoru svetlosti, a drugi od njega udaljava. Pošto je brzina svetlosti ista u oba slučaja razlikuju se vremena za koje će svetlost preći te različite udaljenosti. Svetlost će jednog do kosmonauta stići pre drugog što znači da u sa stanovišta ovog sistema događaji nisu istovremeni.
To dovodi do opšteg zaključka: događaji koji su istovremeni u jednom inercijalnom referentnom sistemu nisu istovremeni u onom sistemu u odnosu na koji se dati sistem kreće. Skup sinhronizovanih časovnika iz jednog sistema je nesinhronizovan za posmatrača u drugom koji se kreće u odnosu na taj sistem.
Slaganje brzina
Slaganje brzina se u relativističkoj fizici vrši na drugačiji način nego u klasičnoj. Primer koji srećemo u praksi je da kada se dva voza kreću jednakim brzinama od 100 km/h jedan prema drugome relativna brzina je 200 km/h. Ako bi se ta dva voza kretala brzinom približno jednakom c, njihova relativna brzina nije 2c, kako govori svakodnevno iskustvo, već približno c, jer je brzina svetlosti ista za posmatrače iz svih inercijalnih referentnih sistema, prema Ajnštajnovom postulatu. Naravno, brzina pomenuta u formulaciji postulata ne mora biti brzina same svetlosti, već brzina tela koje se kreće brzinom približnoj jednakoj onoj kod svetlosti [Napomene 2]. Nesuglasica sa praktičnim primerom objašnjava se zakonom slaganja brzina izmenjenim u odnosu na klasični, koji je samo granični slučaj relativističkog, i važi za brzine mnogo manje od brzine svetlosti, poput onih iz prvog primera. Naime, relativna brzina u prvom slučaju nije egzaktno 200 km/h, već odstupa za jako malu vrednost, koja se praktično ne može izmeriti Za razliku od jednostavne aditivne metode ,koja sledi iz Galilejevih transformacija, iz Lorencovih transformacija se dobija nešto složeniji zakon sabiranja brzina:
Može se primetiti da kada je ili jedanako onda je i ,što je u skladu sa Ajnštajnovim postulatom. S druge strane za ovaj zakon postaje aposkrimativno ekvivalentan onom dobijenom iz Galilejevih transformacija.
U vektorskom obliku se relativistički zakon slaganja brzina se zapisuje na sledeći način: