一部の古細菌は光エネルギーの利用も行うようである。バクテリオクロロフィルを使った光合成は知られていないものの[注 24]、高度好塩菌やMarine group IIが保有する、バクテリオロドプシンやプロテオロドプシンは、光駆動プロトンポンプの機能を持つ[118][119]。地球上における光エネルギーの利用はバクテリオクロロフィルを含むクロロフィル型が主だと考えられてきたが、細菌を含めたプロテオロドプシンによるエネルギー生産量はその1割にも達すると見積もられており[120]、古細菌Marine group IIもその一部を占める。ただしこれらは炭素固定を行わない光従属栄養生物と考えられる。
^Ferroplasma acidarmanusとFerroplasma type II(16S rRNA配列99.2%)の間にも組み換えは起こるが、Ferroplasma acidarmanus同士よりもはるかに少ない組み換えしか見られない
^1例のみだが、未培養系統の古細菌MCG-A(Bathyarchaeota class 6)からバクテリオクロロフィルa合成酵素を含む配列が報告されている[14]。このar-bchG(古細菌型バクテリオクロロフィルa合成酵素)は、細菌の持つバクテリオクロロフィルa合成酵素とは系統的に離れており、最も同一性の高いRhodospirillum rubrumとの比較でも27%しか一致しない。大腸菌で発現させた実験によると、実際にこの遺伝子は機能するようである。
^ abcdeWoese, C.R., et al. (1990). “Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya”. Proc. Natl. Acad. Sci. U S A87 (12): 4576–9. PMID2112744.
^ abcCavalier-Smith, T. (2014). “The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life”. Cold Spring Harb. Perspect. Biol.6 (9). doi:10.1101/cshperspect.a016006. PMID25183828.
^ abcPetitjean, C., et al. (2014). “Rooting the Domain archaea by phylogenomic analysis supports the foundation of the new kingdom proteoarchaeota”. Genome. Biol. Evol.7 (1): 191-204. doi:10.1093/gbe/evu274. PMID25527841.
^Castelle, C.J., Banfield, J.F. (2018). “Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life”. Cell172 (6): 1181-1197. doi:10.1016/j.cell.2018.02.016. PMID29522741.
^ abLionel Guy, Thijs J.G. Ettema (2011). “The archaeal ‘TACK’ superphylum and the origin of eukaryotes”. Trends in Microbiology19 (12): 580-587.
^Nunoura, T., et al. (2010). “Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group”. Nucleic Acids Research39 (8): 3204-23. doi:10.1093/nar/gkq1228. PMID21169198.
^Barns, S. M., et al. (1996). “Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences”. Proc Natl Acad Sci U S A93 (17): 9188–9193. PMID8799176.
^Elkins, J. G., et al. (2008). “A korarchaeal genome reveals insights into the evolution of the Archaea”. Proc Natl Acad Sci U S A105 (23): 8102–7. PMID18535141.
^Evans, P. N., et al. (2015). “Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics”. Nucleic Acids Research350 (6259): 434-8. doi:10.1126/science.aac7745. PMID26494757.
^ abMeng, J., et al. (2009). “An uncultivated crenarchaeota contains functional bacteriochlorophyll a synthase”. ISME J.3 (1): 106-16. doi:10.1038/ismej.2008.85. PMID18830277.
^Takai, K., Horikoshi, K. (2016). “Genetic diversity of archaea in deep-sea hydrothermal vent environments”. Genetics152 (4): 1285-97. PMID10430559.
^ abYoussef, N. H., et al. (2015). “Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum 'Diapherotrites'”. ISME J.9 (2): 447-60. doi:10.1038/ismej.2014.141. PMID25083931.
^ abcBaker, B. J., et al. (2010). “Enigmatic, ultrasmall, uncultivated Archaea”. Proc. Natl. Acad. Sci. U S A.107 (19): 8806-11. doi:10.1073/pnas.0914470107. PMID20421484.
^Comolli, L. R., et al. (2009). “Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon”. ISME J.3 (2): 159-67. doi:10.1038/ismej.2008.99. PMID18946497.
^ abNarasingarao, P., et al. (2012). “De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities”. ISME J.6 (1): 81-93. doi:10.1038/ismej.2011.78. PMID21716304.
^Waters, E., et al. (2003). “The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism”. Proc Natl Acad Sci U S A100 (22): 12984–8. PMID14566062.
^Valentine, D. L. (2007). “Adaptations to energy stress dictate the ecology and evolution of the Archaea”. Nat. Rev. Microbiol.5 (4): 316–23. doi:10.1038/nrmicro1619. PMID17334387.
^ abTakai, K., et al. (2008). “Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation”. Proc. Natl. Acad. Sci. U S A105: 10949-54. doi:10.1073/pnas.0712334105.
^Schleper, C., et al. (1995). “Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0”. J. Bacteriol.177: 7050–7059. PMID8522509.
^Sorokin, D.Y., et al. (2018). “Methanonatronarchaeum thermophilum gen. nov., sp. nov. and Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov.”. Int. J. Syst. Evol. Microbiol.68 (7): 2199-2208. doi:10.1099/ijsem.0.002810. PMID29781801.
^Schleper, C., et al. (1995). “Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0”. J. Bacteriol.177: 7050–7059. PMID8522509.
^Jolivet, E., et al. (2003). “Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation”. Int. J. Syst. Evol. Microbiol.53: 847-51. doi:10.1099/ijs.0.02503-0. PMID12807211.
^Christa Schleper (2007). “Diversity of Uncultivated Archaea: Perspectives From Microbial Ecology and Metagenomics”. Archaea: Evolution, Physiology, and Molecular Biology: 39-50. doi:10.1002/9780470750865.ch4.
^Teske, A., Sørensen, K. B. (2008). “Uncultured archaea in deep marine subsurface sediments: have we caught them all?”. ISME J.2 (1): 3–18. doi:10.1038/ismej.2007.90. PMID18180743.
^Lipp, J. S., et al. (2008). “Significant contribution of Archaea to extant biomass in marine subsurface sediments”. Nature454 (7207): 991. doi:10.1038/nature07174. PMID18641632.
^López-García, P., et al. (2001). “Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front”. FEMS Microbiol. Ecol.36 (2–3): 193–202. PMID11451524.
^Brochier-Armanet, C., et al. (2008). “Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota”. Nature Reviews Microbiology6 (3): 245–52. doi:10.1038/nrmicro1852. PMID18274537.
^Konneke, M., et al. (2005). “Isolation of an autotrophic ammonia-oxidizing marine archaeon”. Nature437: 543–546. PMID16177789.
^ abStieglmeier, M., et al. (2014). “Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota”. Int. J. Syst. Evol. Microbiol.64: 2738-52. doi:10.1099/ijs.0.063172-0. PMID24907263.
^ abQin, W., et al. (2017). “Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota”. Int. J. Syst. Evol. Microbiol.67 (12): 5067-5079. doi:10.1099/ijsem.0.002416. PMID29034851.
^Jung, M.Y., et al. (2018). “Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil”. Int. J. Syst. Evol. Microbiol.: 3084-3095. doi:10.1099/ijsem.0.002926. PMID30124400.
^Mincer, T.J. et al. (2007). “Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre”. Environ. Microbiol.9 (5): 1162-75. doi:10.1111/j.1462-2920.2007.01239.x. PMID17472632.
^Burns, D. G., et al. (2007). “Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain”. Int J Syst Evol Microbiol57: 387-92. doi:10.1099/ijs.0.64690-0.
^Golyshina, O. V., et al. (2000). “Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea”. Int. J. Syst. Evol. Microbiol.50 Pt 3 (3): 997–1006. PMID10843038.
^Kuwabara, T., et al. (2005). “Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount”. Int. J. Syst. Evol. Microbiol.55 (Pt 6): 2507–14. doi:10.1099/ijs.0.63432-0. PMID16280518.
^Huber H, et al. (2000). “Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov.”. Int. J. Syst. Evol. Microbiol.50: 2093–100. PMID11155984.
^Küper, U., et al. (2010). “Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis”. Proc. Natl. Acad. Sci. U S A107 (7): 3152-6. doi:10.1073/pnas.0911711107.
^Heimerl, T., et al. (2017). “A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans”. Front. Microbiol.8. doi:10.3389/fmicb.2017.01072.
^Nickell, S., et al. (2003). “Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography”. J. Struct. Biol.141 (1): 34–42. doi:10.1016/S1047-8477(02)00581-6. PMID12576018.
^ abcdeKlingl, A. (2014). “S-layer and cytoplasmic membrane – exceptions from the typical archaeal cell wall with a focus on double membranes”. Front. Microbiol.5. doi:10.3389/fmicb.2014.00624. PMID25505452.
^Kinosita, Y., et al. (2016). “Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum”. Nat. Microbiol.1. doi:10.1038/nmicrobiol.2016.148. PMID27564999.
^Ng, S. Y., et al. (2006). “Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications”. J. Mol. Microbiol. Biotechnol.11 (3-5): 167–91. PMID16983194.
^Metlina, A. L. (2004). “Bacterial and archaeal flagella as prokaryotic motility organelles”. Biochemistry (Mosc)69 (11): 1203–12. PMID15627373.
^Hixon, W. G., Searcy, D. G. (1993). “Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts”. Biosystems29 (2-3): 151–60. PMID8374067.
^ abcdZaremba-Niedzwiedzka, K., et al. (2017). “Asgard archaea illuminate the origin of eukaryotic cellular complexity”. Nature541 (7637): 353–358. doi:10.1038/nature21031.
^Waters, E., et al. (2003). “The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism”. Proc. Natl. Acad. Sci. U S A100 (22): 12984–8. PMID14566062.
^Galagan JE, et al. (2002). “The genome of M. acetivorans reveals extensive metabolic and physiological diversity”. Genome Res12 (4): 532–42. PMID11932238.
^Pratas, D., Pinho, A. (2017). “On the Approximation of the Kolmogorov Complexity for DNA Sequences”. Pattern Recognition and Image Analysis10255: 259–266. doi:10.1007/978-3-319-58838-4_29.
^Musgrave, D. R., et al. (1991). “DNA binding by the archaeal histone HMf results in positive supercoiling”. Proc Natl Acad Sci U S A88 (23): 10397–401. PMID1660135.
^Fahrner, R. L., et al. (2001). “An ancestral nuclear protein assembly: crystal structure of the Methanopyrus kandleri histone”. Protein Sci.10 (10): 2002–7. PMID11567091.
^Pereira, S.L., et al. (1997). “Archaeal nucleosomes”. Proc. Natl. Acad. Sci. USA.94: 12633-12637. PMID9356501.
^DeLange, R. J., et al. (1981). “A histone-like protein (HTa) from Thermoplasma acidophilum. II. Complete amino acid sequence”. J. Biol. Chem.256 (2): 905–11. PMID7005226.
^Luo, X., et al. (2007). “CC1, a novel crenarchaeal DNA binding protein”. J. Bacteriol.189 (2): 403–9. PMID17085561.
^Barry, E. R., Bell, S. D. (2006). “DNA replication in the archaea”. Microbiol Mol Biol Rev70 (4): 876–87. PMID17158702.
^Robinson, N. P., Bell, S. D. (2005). “Origins of DNA replication in the three domains of life”. FEBS J272 (15): 3757–66. PMID16045748.
^Matsunaga, F., et al. (2003). “Identification of short 'eukaryotic' Okazaki fragments synthesized from a prokaryotic replication origin”. EMBO Rep4 (2): 154–8. PMID12612604.
^Robinson, N.P., et al. (2004). “Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus”. CELL161 (1): 25–38. PMID14718164.
^ abLecompte, O., et al. (2002). “Comparative analysis of ribosomal proteins in complete genomes: An example of reductive evolution at the domain scale”. Nucleic Acids Research30: 5382–5390. PMID12490706.
^Dridi, B., et al. (2011). “The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea”. J. Antimicrob. Chemother.66 (9): 2038-44. doi:10.1093/jac/dkr251. PMID21680581.
^Huber, H., et al. (2008). “A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis”. Proc Natl Acad Sci U S A105 (22): 7851-6. doi:10.1073/pnas.0801043105.
^Samson, R. Y., et al. (2008). “A role for the ESCRT system in cell division in archaea”. Science322 (5908): 1710-3. doi:10.1126/science.1165322. PMID19008417.
^Lindås, A.C., et al. (2008). “A unique cell division machinery in the Archaea”. Proc. Natl. Acad. Sci. U S A105 (45): 18942-6. doi:10.1073/pnas.0809467105. PMID18987308.
^Cann, I. K. (2008). “Cell sorting protein homologs reveal an unusual diversity in archaeal cell division”. Proc Natl Acad Sci U S A105 (45): 18653-4. doi:10.1073/pnas.0810505106. PMID19033202.
^ abRosenshine, I., et al. (1989). “The mechanism of DNA transfer in the mating system of an archaebacterium”. Science245 (4924): 1387-9. PMID2818746.
^Fröls, S., et al. (2008). “UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation”. Mol. Microbiol.70 (4): 938-52. doi:10.1111/j.1365-2958.2008.06459.x. PMID18990182.
^Fröls, S., et al. (2011). “Reactions to UV damage in the model archaeon Sulfolobus solfataricus”. Biochem. Soc. Trans.37: 36-41. doi:10.1042/BST0370036. PMID19143598.
^ abcEppley, J.M., et al. (2007). “Genetic exchange across a species boundary in the archaeal genus ferroplasma”. Genetics177 (1): 407-16. doi:10.1534/genetics.107.072892. PMID17603112.
^Francis CA, et al. (2007). “New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation”. ISME J.1 (1): 19–27. doi:10.1038/ismej.2007.8. PMID18043610.
^Leininger, S., et al. (2006). “Archaea predominate among ammonia-oxidizing prokaryotes in soils”. Nature442 (7104): 806–9. doi:10.1038/nature04983. PMID16915287.
^Boetius, A., et al. (2000). “A marine microbial consortium apparently mediating anaerobic oxidation of methane”. Nature407 (6804): 623-6. doi:10.1038/35036572. PMID11034209.
^Doxey, A. C., et al. (2015). “Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production”. ISME J.9 (2): 461-71. doi:10.1038/ismej.2014.142. PMID25126756.
^Frigaard, N.U., et al. (2006). “Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea”. Nature439 (7078): 847-50. doi:10.1038/nature04435. PMID16482157.
^Samuel, B.S., et al. (2007). “Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut”. Proc. Natl. Acad. Sci. U S A104 (25): 10643–8. PMID17563350.
^Brugère, J. F., et al. (2014). “Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease.”. Gut Microbes.5 (1): 5-10. doi:10.4161/gmic.26749.
^Vianna, M. E., et al. (2006). “Identification and quantification of archaea involved in primary endodontic infections”. J. Clin. Microbiol.44 (4): 1274–82. PMID16597851.
^Namwong, S., et al. (2007). “Halococcus thailandensis sp. nov., from fish sauce in Thailand.”. Int. J. Syst. Evol. Microbiol.57: 2199-203. doi:10.1099/ijs.0.65218-0. PMID17911282.
^Jenney, F. E., Adams, M. W. (January 2008). “The impact of extremophiles on structural genomics (and vice versa)”. Extremophiles12 (1): 39–50. doi:10.1007/s00792-007-0087-9. PMID17563834.
^Schiraldi, C., et al. (2002). “Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics”. J. Ind. Microbiol. Biotechnol.28 (1): 23-31. doi:10.1038/sj/jim/7000190. PMID11938468.
^ abcIwabe, N., et al. (1989). “Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes”. Proc. Natl. Acad. Sci. U S A86 (23): 9355–9. PMID2531898.
^Wilde, S. A., et al. (1980). “Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago”. Earth and Planetary Science Letters47 (3): 370–382. doi:10.1016/0012-821X(80)90024-2.
^Manhesa, G., et al. (2001). “Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics”. Earth and Planetary Science Letters409 (6817): 175-8. doi:10.1038/35051550. PMID11196637.
^Dodd, M. S., et al. (2017). “Evidence for early life in Earth's oldest hydrothermal vent precipitates”. Nature543 (7643). doi:10.1038/nature21377. PMID28252057.
^Bell, E. A., et al. (2015). “Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon”. Proc. Natl. Acad. Sci. U S A112 (47): 14518-21. doi:10.1073/pnas.1517557112. PMID26483481.
^Ueno, Y., et al. (2006). “Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era”. Nature440 (7083): 516–519. PMID16554816.
^Feng, D. F., et al. (1997). “Determining divergence times with a protein clock: update and reevaluation”. Proc. Natl. Acad. Sci. U S A94 (24): 13028–33. PMID9371794.
^Wolfe, J. M., et al. (2018). “Horizontal gene transfer constrains the timing of methanogen evolution”. Nat. Ecol. Evol.2 (5): 897-903. doi:10.1038/s41559-018-0513-7. PMID29610466.
^ abBetts, H. C., et al. (2018). “Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin”. Nat. Ecol. Evol.2: 1556–1562. doi:10.1038/s41559-018-0644-x. PMID30127539.
^Theobald, D. L. (2010). “A formal test of the theory of universal common ancestry”. Nature465 (7295): 219-22. doi:10.1038/nature09014. PMID20463738.
^ abGogarten, J.P., et al. (1989). “Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes”. Proc. Natl. Acad. Sci. U S A86 (27): 6661–5. PMID2528146.
^ abcdeCavalier-Smith, T. (2002). “The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification”. Cold Spring Harb Perspect Biol.52: 7-76. doi:10.1099/00207713-52-1-7.
^Lake, J. A., et al. (1992). “Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Science257 (5066): 74-6. PMID1621096.
^Baldauf, S. L., et al. (1996). “The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny”. Proc. Natl. Acad. Sci. U S A93 (15): 7749-54. PMID8755547.
^Woese, C. (1998). “The universal ancestor”. Proc. Natl. Acad. Sci. U S A95 (12): 6854-9. PMID9618502.
^Cox, C. J., et al. (2008). “The Deep Archaeal Roots of Eukaryotes”. Proc. Natl. Acad. Sci. U S A105 (51): 20356–20361. doi:10.1073/pnas.0810647105. PMID19073919.
^Williams, T. A., et al. (2013). “An archaeal origin of eukaryotes supports only two primary domains of life”. Nature504 (7479): 231-6. doi:10.1038/nature12779. PMID24336283.
^Katoh, K., et al. (2001). “Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny”. J. Mol. Evol.53 (4-5): 477–84. PMID11675608.
^Battistuzzi, F. U., et al. (2004). “A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land”. BMC. Evol. Biol.4 (44). PMID15535883.
^Baldauf, S. L., et al. (1996). “The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny”. Proc Natl Acad Sci U S A93 (15): 7749-54. PMID8755547.
^Lake, J. A., et al. (1984). “Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes”. Proc. Natl. Acad. Sci. U S A81 (12): 3786-90. PMID6587394.
^Lake, J. A., et al. (1988). “Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Nature331 (6152): 184-6. doi:10.1038/331184a0. PMID3340165.
^Yamagishi, A., T. Oshima (1995). “Retern to dichotomy: Bacteria and Archaea”. Chemical evolution: Self-organization of the macromolecules of life: 155-158. ISBN978-0937194324.
^Yamagishi, A., T. Oshima (1995). “Retern to dichotomy: Bacteria and Archaea”. Chemical evolution: Self-organization of the macromolecules of life: 156. ISBN978-0937194324.
^Nunoura, T., et al. (2011). “Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group”. Nucleic Acids Res39 (8): 3204-23. doi:10.1093/nar/gkq1228. PMID21169198.
^ abcWoese, C. R., Fox, G. E. (1977). “Phylogenetic structure of the prokaryotic domain: the primary kingdoms”. Proc. Natl. Acad. Sci. U S A74 (11): 5088–90. PMID270744.
^Hori, H., Osawa, S. (1987). “Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences”. Mol. Biol. Evol.4 (5): 445–72. PMID2452957.
^Brock, T.D., et al. (1969). “Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile”. J. Bacteriol.98 (1): 289-97. PMID5781580.
^ abDarland, G., et al. (1970). “A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile”. Science170 (3965): 1416-8. PMID5481857.
^Brock, T.D., et al. (1972). “Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature”. Arch. Mikrobiol.84 (1): 54-68. PMID4559703.
^Sehgal, S.N., et al. (1962). “Lipids of Halobacterium cutirubrum”. Can J Biochem Physiol40: 69-81. PMID13910279.
^Langworthy, T.A., et al. (1972). “Lipids of Thermoplasma acidophilum”. J Bacteriol112 (3): 1193-200. PMID4344918.
^Brock, T. D., et al. (1972). “Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature”. Arch. Mikrobiol.84: 54–68. doi:10.1007/BF00408082. PMID4559703.
^Kimura, M. (1968). “Evolutionary rate at the molecular level”. Nature217 (5129): 624-6. PMID5637732.
^DOI, R.H., IGARASHI, R.T. (March 1965). “Conservation of Ribosomal and Messenger Ribonucleic Acid Cistrons in Bacillus Species”. J. Bacteriol.90: 384-90. doi:10.1016/0022-5193(65)90083-4. PMID14329452.
^De Smedt, J., De Ley, J., (1977). “Intra- and Intergeneric Similarities of Agrobacterium Ribosomal Ribonucleic Acid Cistrons”. Int. J. Syst. Bacteria27: 222-240.
^Takahashi, H., et al. (1969). “Conserved portion in bacterial ribosomal RNA”. J. Gen. Appl. Microbiol.15 (2): 209-216. doi:10.2323/jgam.15.209.
^Zuckerkandl, E., Pauling, L. (March 1965). “Molecules as documents of evolutionary history”. Journal of Theoretical Biology8 (2): 357–66. doi:10.1016/0022-5193(65)90083-4. PMID5876245.
^Makula, R.A., Singer, M. E. (1978). “Ether-containing lipids of methanogenic bacteria”. Biochem. Biophys. Res. Commun.82 (2): 716–22. PMID666868.
^Tornabene, T.G., et al. (1978). “Phytanyl-glycerol ethers and squalenes in the archaebacterium Methanobacterium thermoautotrophicum”. J. Mol. Evol.11 (3): 259–66. PMID691077.
^Woese, C. R., et al. (1978). “Archaebacteria”. J Mol Evol11 (3): 245–51. PMID691075.
^Mayr, E. (1998). “Two empires or three?”. Proc. Natl. Acad. Sci. U S A95 (17): 9720-3. PMID9707542.
^Stetter, K. O. (1982). “Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C”. Nature300: 258 - 260. doi:10.1038/300258a0.
^ abBult, C.J., et al. (1996). “Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii”. Science273 (5278): 1058–1073. doi:10.1126/science.273.5278.1058. PMID868808.
^No authors (2002). “Validation of publication of new names and new combinations previously effectively published outside the IJSEM. International Journal of Systematic and Evolutionary Microbiology”. Int. J. Syst. Evol. Microbiol.52: 685-90. doi:10.1099/00207713-52-3-685. PMID12054225.
^Kaneko, T., et al. (1996). “Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions”. DNA Res.3 (3): 109-36. PMID8905231.
Boone, D. R., Castenholz, R. W. & Garrity, G. M. (2001). Bergey's Manual of Systematic Bacteriology, 2nd Edition, Volume One,The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer-Verlag. ISBN 0387987711
Process of monitoring and controlling the movement of a craft or vehicle from one place to another For other uses, see Navigation (disambiguation). A navigation system on an oil tanker Navigation[1] is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another.[2] The field of navigation includes four general categories: land navigation,[3] marine navigation, aeronautic navigation, and space n...
Cet article a pour sujet la Savoie en tant qu'entité historique, géographique et culturelle. Pour plus d'information sur le découpage administratif, voir les articles sur les départements français de la Savoie et de la Haute-Savoie. Pour les autres significations du nom Savoie, voir Savoie (homonymie) . Savoie Savouè (frp) Localisation en Europe de la Savoie. Détail Détail Administration Pays France Statut actuel Départements :- Savoie (73)- Haute-Savoie (74)Conseil Savoie...
1997 video gameThe Oregon Trail 3rd EditionCover artDeveloper(s)MECCPublisher(s)The Learning Company (TLC Properties Inc.)SeriesThe Oregon TrailPlatform(s)Microsoft Windows 95 (CD, DVD), Mac OS 7.5 (CD)ReleaseNovember 1997[1]Genre(s)EdutainmentMode(s)Single-player The Oregon Trail 3rd Edition (full title: The Oregon Trail 3rd Edition: Pioneer Adventures) is the second sequel to the 1985 edutainment video game The Oregon Trail after Oregon Trail II. It was developed by MECC and release...
Révolte spartakiste de Berlin Barricade à Berlin durant le soulèvement, en janvier 1919. Informations générales Date 5 janvier - 12 janvier 1919 Lieu Berlin Issue Victoire gouvernementale Belligérants Conseil des commissaires du peuple Parti communiste d'AllemagneLigue spartakisteParti social-démocrate indépendant d'Allemagne Commandants Gustav Noske Karl LiebknechtRosa Luxemburg Forces en présence 3 000 hommes Pertes 17 morts20 blessés 139-180 morts Données clés modifi...
Sixshooter PeaksSix-shooter Peaks, east aspectHighest pointElevation6,379 ft (1,944 m)[1]Prominence679 ft (207 m)[1]Isolation4.37 mi (7.03 km)[1]Coordinates38°08′15″N 109°40′05″W / 38.1375419°N 109.6681427°W / 38.1375419; -109.6681427[2]GeographySixshooter PeaksLocation in UtahShow map of UtahSixshooter PeaksSixshooter Peaks (the United States)Show map of the United States LocationBears Ears...
City in Kentucky, United StatesSt. Matthews, KentuckyCityDowntown St. MatthewsLocation of St. Matthews in Jefferson County, KentuckySt. MatthewsLocation within the state of KentuckyShow map of KentuckySt. MatthewsSt. Matthews (the United States)Show map of the United StatesCoordinates: 38°14′59″N 85°38′18″W / 38.24972°N 85.63833°W / 38.24972; -85.63833CountryUnited StatesStateKentuckyCountyJeffersonIncorporated1950[1]Area[2] • T...
American vocal group Martha and the VandellasMartha and the Vandellas in 1965(L-to-R): Rosalind Ashford, Martha Reeves, and Betty KellyBackground informationAlso known as The Del-Phis (1957–1961) The Vels (1961–1962) Martha Reeves & the Vandellas (1967–1972) OriginDetroit, Michigan, U.S.Genres R&B soul pop Northern soul Years active1957–1972LabelsGordyPast members Martha Reeves Rosalind Ashford-Holmes Annette Beard-Helton Gloria Williams Betty Kelly Lois Reeves Sandra Tilley M...
American television sitcom BensonGenreSitcomCreated bySusan Harris[1]StarringRobert GuillaumeJames NobleInga SwensonMissy GoldRené Auberjonois (1980–1986)Ethan Phillips (1980–1985)Caroline McWilliams (1979–1981)Didi Conn (1981–1985)Lewis J. Stadlen (1979–1980)Billie Bird (1984–1986)Theme music composerGeorge TiptonComposerGeorge Aliceson TiptonCountry of originUnited StatesOriginal languageEnglishNo. of seasons7No. of episodes158 (list of episodes)ProductionExecutive prod...
La neutralità di questa voce o sezione sugli argomenti storia e guerra è stata messa in dubbio. Motivo: Significativa di come era lo sconosciuto Aldo Gastaldi, prima ancora di divenire il famoso e leggendario comandante partigiano Bisagno è il primo esempio, ma l'intera voce è in tono agiografico lontanissimo dal necessario punto di vista neutrale Per contribuire, correggi i toni enfatici o di parte e partecipa alla discussione. Non rimuovere questo avviso finché la disputa non è ...
Organisation of the Royal Navy between 1546 and 1832 For the modern day organisation of the same name, see Navy Board (1964-present). The Navy Board (1546-1832)The Flag of the Navy Board in 1832Board overviewFormed24 April 1546Preceding BoardCouncil of the MarineDissolved1 June 1832Jurisdiction Kingdom of England (1546-1707) Great Britain (1707–1801) United Kingdom of Great Britain and Ireland (1801–1832) HeadquartersNavy OfficeBoard executiveLieutenant of the AdmiraltyTreasur...
English bishop (1707–1771) The Right ReverendRichard TrevorBishop of DurhamDioceseDiocese of DurhamIn office1752–1771 (death)PredecessorJoseph ButlerSuccessorJohn EgertonOther post(s)Bishop of St Davids (1744-52)Personal detailsBorn30 September 1707Peckham, SurreyDied9 June 1771LondonBuriedGlynde, SussexNationalityBritishDenominationAnglicanResidenceAuckland CastleGlynde PlaceParentsThomas Trevor, 1st Baron TrevorAnne TrevorAlma materAll Souls' College, OxfordRichard Trevor (30 September ...
British colony from 1884 to 1966 Colony of Basutoland1884–1966 Flag Coat of arms Royal anthem: God Save the Queen (1884–1901; 1952–1966) God Save the King (1901–1952) StatusCrown Colony under partial local ruleCapitalMaseruLanguagesEnglish (official)SesothoGovernmentConstitutional monarchyResident Commissioner(a.k.a governor) • 1884–1894 Marshal Clarke• 1961–1966 Alexander Giles Paramount Chief • 1884–1891 Letsie I• 1891–1905 Lerothol...
Pour les articles homonymes, voir Toomey. Pat Toomey Portrait officiel de Pat Toomey (2018). Fonctions Sénateur des États-Unis 3 janvier 2011 – 3 janvier 2023(12 ans) Élection 2 novembre 2010 Réélection 8 novembre 2016 Circonscription Pennsylvanie Législature 112e, 113e, 114e, 115e, 116e et 117e Groupe politique Républicain Prédécesseur Arlen Specter Successeur John Fetterman Représentant des États-Unis 3 janvier 1999 – 3 janvier 2005(6 ans) Élection 3 novembre 1998...
В Википедии есть статьи о других людях с такой фамилией, см. Венгер. Леонид Абрамович Венгер Дата рождения 26 мая 1925(1925-05-26) Место рождения Харьков Дата смерти 17 июня 1992(1992-06-17) (67 лет) Место смерти Москва Страна СССР Род деятельности психолог Научная сфера возраст�...
American actor, writer and director (born 1957) Jon GriesGries at the 2011 San Diego Comic-ConBornJonathan Gries (1957-06-17) June 17, 1957 (age 67)Glendale, California, U.S.Other namesJon FrancisOccupations Actor writer director music video director Years active1968–present Jonathan Gries (/ɡraɪz/ GRYZ; born June 17, 1957)[1][2] is an American actor, writer, and director. He is best known for the role of Uncle Rico in Napoleon Dynamite for which he was ...
مدرسة الشرطة نوار رباحي الدولة الجزائر الولاء المديرية العامة للأمن الوطني الدور تكوين الحجم حوالي جزء من شرطة المقر الرئيسي مدرسة الشرطة - بوشقوف - قالمة القادة القائد الحالي مدير المدرسة تعديل مصدري - تعديل مدرسة الشرطة نوار رباحي أو مدرسة الشرطة بقالمة هي أحد مر�...