知られている限り、全ての藍藻は好気環境下で酸素発生型光合成を行う。ただし、嫌気環境下で非酸素発生型光合成(光化学系Iを使用し、硫化水素を電子供与体として硫黄を生成)を行う例が知られている[64][65]。また連続暗黒下でも、有機物を利用した従属栄養を行って生育可能な種(通性光独立栄養性)もいる[66]。Synechocystis sp. PCC 6803 など従属栄養能をもつ藍藻は、光合成遺伝子の変異が致死的にならないため(光合成しなくても生きていける)、光合成研究のモデル生物として広く用いられている。またメタゲノム研究(海水などの環境から直接抽出したDNAをもとにしたゲノム解析)から、光合成能を含め代謝的に不完全(光化学系II、ルビスコ、クエン酸回路などの欠失)な藍藻 (UCYN-A, unicellular cyanobacteria group A) の存在が示されているが、これは他生物に共生して栄養的に依存して生きているものと考えられている[67][68]。古くは「無色の藍藻」が報告されているが[69]、少なくともその一部は全く別の細菌群に属することが明らかとなっている(例: ベッギアトア属)。
ほとんどの藍藻は、クロロフィルa をもつ。一部の藍藻は、クロロフィル a に加えて、クロロフィル b、d、または f をもつ[70][71][72]。クロロフィル d や f は生物の中で一部の藍藻のみがもつ色素であり、人間の目には見えない近赤外光を光合成に利用できる。クロロフィル b(または類似色素)をもつ藍藻は、原核緑藻ともよばれる。原核緑藻のプロクロロコックス属 (Prochlorococcus) はクロロフィル a の代わりにジビニルクロロフィル a をもつ点で特異な存在であり、光合成の反応中心でジビニルクロロフィル a を用いる唯一の生物である[73][74]。またアカリオクロリス属 (Acaryochloris) はクロロフィル a 量が少なく、反応中心でクロロフィル d を用いている[75]。
藍藻の炭素固定はカルビン回路によって行われる。藍藻のもつルビスコ(リブロース1,5-ビスリン酸カルボキシラーゼ/オキシゲナーゼ)には2タイプが知られる。多くの藍藻は、緑色植物などがもつものと相同な Form IB ルビスコをもつ。このような藍藻は β-シアノバクテリア、Form IB ルビスコからなるカルボキシソームは β-カルボキシソーム とよばれる[48]。一方、一部の藍藻(プロクロロコックス属など)は、一部のプロテオバクテリアのものと相同な Form IA ルビスコをもつ(おそらく遺伝子水平伝播による)。このような藍藻は α-シアノバクテリア、Form IA ルビスコからなるカルボキシソームは α-カルボキシソーム とよばれる[48]。
^ abcdefGraham, J.E., Wilcox, L.W. & Graham, L.E. (2008). “Cyanobacteria”. Algae. Benjamin Cummings. pp. 94–121. ISBN978-0321559654
^ abBüdel, B., & Kauff, F. (2012). “Prokaryotic Algae, Bluegreen Algae”. In Frey, W. (eds.). Syllabus of Plant Families. A. Engler's Syllabus der Pflanzenfamilien Part 1/1. Borntraeger. pp. 5-40. ISBN978-3-443-01061-4
^ abGarcia‐Pichel, F., Zehr, J. P., Bhattacharya, D. & Pakrasi, H. B. (2019). “What's in a name? The case of cyanobacteria”. Journal of Phycology. doi:10.1111/jpy.12934.
^ abvan den Hoek, C., Mann, D., Jahns, H. M. & Jahns, M. (1995). Algae: an introduction to phycology. Cambridge University Press. ISBN978-0521316873
^ abcdefghiKomárek, J. (2003). “Coccoid and colonial cyanobacteria”. In Wehr, J.D. & Sheath, R.G.. Freshwater Algae of North America. Ecology and Classification. Boston, MA: Academic Press. pp. 59-116. ISBN978-0127415505
^ abcdKomárek, J., Kling, H. & Komárková, J. (2003). “Filamentous cyanobacteria”. In Wehr, J.D. & Sheath, R.G.. Freshwater Algae of North America. Ecology and Classification. Boston, MA: Academic Press. pp. 117-196. ISBN978-0127415505
^Mahasneh, I.A., Grainger, S.L.J. & Whitton, B.A. (1990). “Influence of salinity on hair formation and phosphatase-activities of the blue-green-alga (cyanobacterium) Calothrix viguieri D253”. Br. Phycol. J.25: 25-32. doi:10.1080/00071619000650021.
^ abcdFlores, E. & Herrero, A. (2010). “Compartmentalized function through cell differentiation in filamentous cyanobacteria”. Nature Reviews Microbiology8: 39-50. doi:10.1038/nrmicro2242.
^Singh, S.P. & Montgomery, B.L. (2011). “Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology”. Trends in Microbiology19: 278-285. doi:10.1016/j.tim.2011.03.001.
^ abcHoiczyk, E. & Hansel, A. (2000). “Cyanobacterial cell walls: News from an unusual prokaryotic envelope”. J. Bacteriol.182: 1191-1199. doi:10.1128/JB.182.5.1191-1199.2000.
^Stewart, I., Schluter, P.J. & Shaw, G.R. (2006). “Cyanobacterial lipopolysaccharides and human health - a review”. Environ Health5: 7. doi:10.1186/1476-069X-5-7.
^Flores, E., Herrero, A., Forchhammer, K. & Maldener, I. (2016). “Septal junctions in filamentous heterocyst-forming Cyanobacteria”. Trends in Microbiology24: 79-82. doi:10.1016/j.tim.2015.11.011.
^Bornikoel, J., Carrión, A., Fan, Q., Flores, E., Forchhammer, K., Mariscal, V., ... & Maldener, I. (2017). “Role of two cell wall amidases in septal junction and nanopore formation in the multicellular cyanobacterium Anabaena sp. PCC 7120”. Frontiers in Cellular and Infection Microbiology7: 386. doi:10.3389/fcimb.2017.00386.
^Mullineaux, C. W., Mariscal, V., Nenninger, A., Khanum, H., Herrero, A., Flores, E. & Adams, D. (2008). “Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria”. EMBO J.27: 1299-1308. doi:10.1038/emboj.2008.66.
^Šmarda, J., Šmajs, D., Komrska, J. & Krzyžánek, V. (2002). “S-layers on cell walls of cyanobacteria”. Micron33: 257-277. doi:10.1016/S0968-4328(01)00031-2.
^Ehlers, K. & Oster, G. (2012). “On the mysterious propulsion of Synechococcus”. PLoS One7: e36081. doi:10.1371/journal.pone.0036081.
^Strom, S. L., Brahamsha, B., Fredrickson, K. A., Apple, J. K. & Rodríguez, A. G. (2012). “A giant cell surface protein in Synechococcus WH8102 inhibits feeding by a dinoflagellate predator”. Environmental Microbiology14: 807-816. doi:10.1111/j.1462-2920.2011.02640.x.
^Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R. & Tamagnini, P. (2009). “Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly”. FEMS Microbiology Reviews33: 917-941. doi:10.1111/j.1574-6976.2009.00183.x.
^ abDe Philippis, R. & Vincenzini, M. (1998). “Exocellular polysaccharides from cyanobacteria and their possible applications”. FEMS Microbiology Reviews22: 151-175. doi:10.1111/j.1574-6976.1998.tb00365.x.
^De Philippis, R. & Vincenzini, M. (2003). “Outermost polysaccharidic investments of cyanobacteria: nature, significance and possible applications”. Recent Res. Dev. Microbiol.7: 13-22.
^ abMcCarren, J. & Brahamsha, B. (2009). “Swimming motility mutants of marine Synechococcus affected in production and localization of the S-layer protein SwmA”. J. Bacteriol.191: 1111-1114. doi:10.1128/JB.01401-08.
^Reynolds, C. S. (2007). “Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment”. Hydrobiologia578: 37-45. doi:10.1007/s10750-006-0431-6.
^Ehling-Schulz, M., Bilger, W. & Scherer, S. (1997). “UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune”. J. Bacteriol.179: 1940-1945. doi:10.1128/jb.179.6.1940-1945.1997.
^Storme, J. Y., Golubic, S., Wilmotte, A., Kleinteich, J., Velázquez, D. & Javaux, E. J. (2015). “Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria”. Astrobiology15: 843-857. doi:10.1089/ast.2015.1292.
^Böhm, G. A., Pfleiderer, W., Böger, P. & Scherer, S. (1995). “Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune”. J. Biol. Chem.270: 8536-8539. doi:10.1074/jbc.270.15.8536.
^Jansson, C. & Northen, T. (2010). “Calcifying cyanobacteria-the potential of biomineralization for carbon capture and storage”. Current Opinion in Biotechnology21: 365-371. doi:10.1016/j.copbio.2010.03.017.
^ abReid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C., Macintyre, I. G., Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F. & DesMarais, D. J. (2000). “The role of microbes in accretion, lamination and early lithification of modern marine stromatolites”. Nature406: 989-992. doi:10.1038/35023158.
^Komárek, J. & Čáslavská, J. (1991). “Thylakoidal patterns in oscillatorialean genera”. Archiv für Hydrobiologie/Algological Studies64: 267-270.
^ abMareš, J., Strunecky, O., Bucinska, L. & Wiedermannova, J. (2019) Evolutionary patterns of thylakoid architecture in cyanobacteria. Frontiers in Microbiology10: 277. https://doi.org/10.3389/fmicb.2019.00277
^Nagarajan, A. & Pakrasi, H. B. (2001). “Membrane‐bound protein complexes for photosynthesis and respiration in cyanobacteria”. eLS: 1–8. doi:10.1002/9780470015902.a0001670.pub2.
^Rippka, R. (1974). “A cyanobacterium which lacks thylakoids”. Archiv für Mikrobiologie100: 419-436. doi:10.1007/BF00446333.
^ abCox, G. (1993). “Prochlorophyceae”. In Berner, T.. Ultrastructure of Microalgae. CRC Press. pp. 53-70. ISBN9780849363238
^Hahn, A. & Schleiff, E. (2014). “The Cell Envelope”. In Flores, E.. Cell Biology of Cyanobacteria. Caister Academic Press. pp. 29-88. ISBN978-1-908230-92-8
^Nickelsen, J. & Zerges, W. (2013). “Thylakoid biogenesis has joined the new era of bacterial cell biology”. Frontiers in Plant Science4: 458. doi:10.3389/fpls.2013.00458.
^Rast, A., Heinz, S. & Nickelsen, J. (2015). “Biogenesis of thylakoid membranes”. Biochimica et Biophysica Acta (BBA)-Bioenergetic1847: 821-830. doi:10.1016/j.bbabio.2015.01.007.
^ abGeitler, L. (1932). “Cyanophyceae”. In Rabenhorst, L.. Kryptogamen-Flora. 14. Band. Akademische Verlagsgesellschaft. pp. 1196
^ abcdPrice, G. D., Badger, M. R., Woodger, F. J. & Long, B. M. (2008). “Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants”. Journal of Experimental Botany59: 1441-1461. doi:10.1093/jxb/erm112.
^Yeates, T. O., Kerfeld, C. A., Heinhorst, S., Cannon, G. C. & Shively, J. M. (2008). “Protein-based organelles in bacteria: carboxysomes and related microcompartments”. Nature Reviews Microbiology6: 681-691. doi:10.1038/nrmicro1913.
^Colman, B. (1989). “Photosynthetic carbon assimilation and the suppression of photorespiration in the cyanobacteria”. Aquat. Bot.34: 211-231. doi:10.1016/0304-3770(89)90057-0.
^Bauwe, H., Hagemann, M. & Fernie, A. R. (2010). “Photorespiration: players, partners and origin”. Trends in Plant Science15: 330-336. doi:10.1016/j.tplants.2010.03.006.
^Codd, G.A. & Marsden, W.J.N. (1984). “The carboxysomes (polyhedral bodies) of autotrophic prokarygtes”. Biological Reviews59: 389-422. doi:10.1111/j.1469-185X.1984.tb00710.x.
^Deschamps, P., Colleoni, C., Nakamura, Y., Suzuki, E., Putaux, J. L., Buléon, A., ... & Moreira, D. (2008). “Metabolic symbiosis and the birth of the plant kingdom”. Molecular Biology and Evolution25: 536-548. doi:10.1093/molbev/msm280.
^Nakamura, Y., Takahashi, J. I., Sakurai, A., Inaba, Y., Suzuki, E., Nihei, S., ... & Kawachi, M. (2005). “Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen”. Plant Cell Physiol.46: 539-545. doi:10.1093/pcp/pci045.
^Berg, H., Ziegler, K., Piotukh, K., Baier, K., Lockau, W. & Volkmer‐Engert, R. (2000). “Biosynthesis of the cyanobacterial reserve polymer multi‐L‐arginyl‐poly‐L‐aspartic acid (cyanophycin)”. The FEBS Journal267: 5561-5570. doi:10.1046/j.1432-1327.2000.01622.x.
^Allen, M. M. (1984). “Cyanobacterial cell inclusions”. Annual Reviews in Microbiology38: 1-25.
^Moreira, D., Tavera, R., Benzerara, K., Skouri-Panet, F., Couradeau, E., Gérard, E., Fonta, C.L., Novelo, E., Zivanovic, Y. & López-García, P. (2017). “Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing, basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov.”. International Journal of Systematic and Evolutionary Microbiology67: 653-658. doi:10.1099/ijsem.0.001679.
^Oliver, R.L. (1994). “Floating and sinking in gas-vacuolate cyanobacteria”. Journal of Phycology30: 161-173. doi:10.1111/j.0022-3646.1994.00161.x.
^Villareal, T. A. & Carpenter, E. J. (2003). “Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium”. Microb. Ecol.45: 1-10. doi:10.1007/s00248-002-1012-5.
^Walsby, A.E. (1987). “Mechanisms of buoyancy regulation by planktonic cyanobacteria with gas vesicles”. In P. Fay & C. Van Baalen. The Cyanobacteria. Elsevier. pp. 377-414
^Shukla, H. D. & DasSarma, S. (2004). “Complexity of gas vesicle biogenesis in Halobacterium sp. strain NRC-1: identification of five new proteins”. Journal of Bacteriology186: 3182-3186. doi:10.1128/JB.186.10.3182-3186.2004.
^三室守 (1999). “光合成色素にみられる多様性”. In 千原光雄. バイオディバーシティ・シリーズ (3) 藻類の多様性と系統. 裳華房. pp. 68–94. ISBN978-4785358266
^Cohen, Y., Padan, E. & Shilo, M. (1975). “Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica”. J. Bacteriol.123: 855-861. doi:10.1128/jb.123.3.855-861.1975.
^Rippka, R. (1972). “Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae”. Archiv für Mikrobiologie87: 93-98. doi:10.1007/BF00424781.
^ abZehr, J. P., Bench, S. R., Carter, B. J., Hewson, I., Niazi, F., Shi, T., ... & Affourtit, J. P. (2008). “Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II”. Science322: 1110-1112. doi:10.1126/science.1165340.
^Lewin, R. A. & Withers, N. W. (1975). “Extraordinary pigment composition of a prokaryotic alga”. Nature256: 735–737. doi:10.1038/256735a0.
^Miyashita, H., Adachi, K., Kurano, N., Ikemoto, H., Chihara, M. & Miyachi, S. (1996). “Chlorophyll d as a major pigment”. Nature383: 402. doi:10.1038/383402a0.
^Chen, M., Schliep, M., Willows, R. D., Cai, Z. -L., Neilan, B. A. & Scheer, H. (2010). “A red-shifted chlorophyll”. Science329: 1318-1319. doi:10.1126/science.1191127.
^Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R., Waterbury, J. B. & Welschmeyer, N. A. (1988). “A novel free-living prochlorophyte abundant in the oceanic euphotic zone”. Nature334: 340-343. doi:10.1038/334340a0.
^Goericke, R. & Repeta, D. (1992). “The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine prokaryote”. Limnology and Oceanography37: 425-433. doi:10.4319/lo.1992.37.2.0425.
^Hu, Q., Miyashita, H., Iwasaki, I., Kurano, N., Miyachi, S., Iwaki, M. & Itoh, S. (1998). “A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis”. Proc. Natl. Acad. Sci. U.S.A.95: 13319-13323. doi:10.1073/pnas.95.22.13319.
^Sidler, W. A. (1994). “Phycobilisome and phycobiliprotein structures.”. In Sidler, W. A., & Bryant, D. A.. The Molecular Biology of Cyanobacteria. Springer, Dordrecht. pp. 139-216. ISBN0792332229
^Singh, N. K., Sonani, R. R., Rastogi, R. P. & Madamwar, D. (2015). “The phycobilisomes: an early requisite for efficient photosynthesis in cyanobacteria”. EXCLI Journal14: 268–289. doi:10.17179/excli2014-723.
^Bryant, D. A. (1982). “Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria”. Microbiology128: 835-844. doi:10.1099/00221287-128-4-835.
^Ikeuchi, M. & Ishizuka, T. (2008). “Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria”. Photochemical & Photobiological Sciences7: 1159-1167. doi:10.1039/B802660M.
^Takaichi, S. & Mochimaru, M. (2007). “Carotenoids and carotenogenesis in cyanobacteria: Unique ketocarotenoids and carotenoid glycosides”. Cell Mol. Life Sci.64: 2607-2619. doi:10.1007/s00018-007-7190-z.
^Scherer, S., Almon, H. & Böger, P. (1988). “Interaction of photosynthesis, respiration and nitrogen fixation in cyanobacteria”. Photosynthesis Research15: 95-114. doi:10.1007/BF00035255.
^Zhang, S. & Bryant, D. A. (2011). “The tricarboxylic acid cycle in cyanobacteria”. Science334: 1551-1553. doi:10.1126/science.1210858.
^Stewart, W.D.P. (1980). “Some aspects of structure and function in N fixing cyanobacteria”. Annual Reviews in Microbiology34: 497-536. doi:10.1146/annurev.mi.34.100180.002433.
^Berman-Frank, I., Lundgren, P. & Falkowski, P. (2003). “Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria”. Res. Microbiol.154: 157-164. doi:10.1016/S0923-2508(03)00029-9.
^Díez, B., Bergman, B. & El-Shehawy, R. (2008). “Marine diazotrophic cyanobacteria: out of the blue”. Plant Biotechnol.25: 221-225. doi:10.5511/plantbiotechnology.25.221.
^Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. (1979). “Generic assignments, strain histories and properties of pure cultures of cyanobacteria”. Microbiology111: 1-61. doi:10.1099/00221287-111-1-1.
^León, C., Kumazawa, S. & Mitsui, A. (1986). “Cyclic appearance of aerobic nitrogenase activity during synchronous growth of unicellular cyanobacteria”. Current Microbiology13: 149-153. doi:10.1007/BF01568510.
^El-Shehawy, R., Lugomela, C., Ernst, A. & Bergman, B. (2003). “Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum”. Microbiology149: 1139-1146. doi:10.1099/mic.0.26170-0.
^ abBergman, B., Sandh, G., Lin, S., Larsson, J. & Carpenter, E. J. (2013). “Trichodesmium - a widespread marine cyanobacterium with unusual nitrogen fixation properties”. FEMS Microbiology Reviews37: 286-302. doi:10.1111/j.1574-6976.2012.00352.x.
^Wolk, C.P., Ernst, A., Elhai, J. (1994). “Heterocyst metabolism and development”. In Bryant, D.A.. The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers. pp. 769-823. ISBN0792332229
^Kumar, K., Mella-Herrera, R. A. & Golden, J. W. (2010). “Cyanobacterial heterocysts”. Cold Spring Harbor Perspectives in Biology2: a000315. doi:10.1101/cshperspect.a000315.
^Marco, G., Lange, C. & Soppa, J. (2011). “Ploidy in cyanobacteria”. FEMS Microbiology Letters323: 124-131. doi:10.1111/j.1574-6968.2011.02368.x.
^Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., ... & Kimura, T. (1996). “Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions”. DNA Research3: 109-136. doi:10.1093/dnares/3.3.109.
^Herdman, M., Janvier, M., Rippka, R. & Stanier, R. Y. (1979). “Genome size of Cyanobacteria”. Journal of General Microbiology111: 73-85. doi:10.1099/00221287-111-1-73.
^ abDuggan, P. S., Gottardello, P. & Adams, D. G. (2007). “Molecular analysis of genes involved in pilus biogenesis and plant infection in Nostoc punctiforme”. J. Bacteriol.189: 4547-4551. doi:10.1128/JB.01927-06.
^Jarrell, K.F. & McBride, M.J. (2008). “The surprisingly diverse ways that prokaryotes move”. Nature Reviews Microbiology6: 466-476. doi:10.1038/nrmicro1900.
^Montgomery, B. L. (2007). “Sensing the light: photoreceptive systems and signal transduction in cyanobacteria”. Molecular Microbiology64: 16-27. doi:10.1111/j.1365-2958.2007.05622.x.
^Anagnostidis, K. & Komárek, J. (1988). “Modern approach to the classification system of cyanophytes. 3. Oscillatoriales”. Archiv für Hydrobiologie/Algological Studies50/53: 327-472.
^Meeks, J. C. & Elhai, J. (2002). “Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states”. Microbiology and Molecular Biology Reviews66: 94-121. doi:10.1128/MMBR.66.1.94-121.2002.
^Kaplan-Levy, R. N., Hadas, O., Summers, M. L., Rücker, J., & Sukenik, A. (2010). “Akinetes: dormant cells of cyanobacteria”. Dormancy and Resistance in Harsh Environments. Springer Berlin Heidelberg. pp. 5-27. ISBN978-3-642-12421-1.
^Zhang, C.-C., Laurent, S., Sakr, S., Peng, L. & Bédu, S. (2006). “Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals.”. Mol. Microbiol.59: 367-375. doi:10.1111/j.1365-2958.2005.04979.x.
^ abColeman, M. L., Sullivan, M. B., Martiny, A. C., Steglich, C., Barry, K., DeLong, E. F. & Chisholm, S. W. (2006). “Genomic islands and the ecology and evolution of Prochlorococcus”. Science311: 1768-1770. doi:10.1126/science.1122050.
^ abcWhitton, B.A. & Potts, M. (2000). The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Pub.. pp. 669. ISBN0-09-941464-3
^ abcWhitton, B.A., ed (2012). Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer Science & Business Media. ISBN978-94-007-3854-6
^Garcia-Pichel, F., Belnap, J., Neuer, S. & Schanz, F. (2003). “Estimates of global cyanobacterial biomass and its distribution”. Algological Studies109: 213-227. doi:10.1127/1864-1318/2003/0109-0213.
^ abcCastenholz, R.W. & Waterbury, J.B. (1989). “Oxygenic photosynthetic bacteria. Group I. Cyanobacteria”. Bergey’s Manual of Systematic Bacteriology3: 1710-1789.
^ abQuesada, A. & Vincent, W. F. (2012). “Cyanobacteria in the cryosphere: snow, ice and extreme cold”. Ecology of Cyanobacteria II. Springer Net.. pp. 387-399. ISBN978-94-007-3854-6.
^Steinberg, C.E.W., Schäfer, H., Beisker, W., Brüggemann, R. (1998). “Deriving restoration goals for acidified lakes from taxonomic studies”. Restor, Ecol.6: 327-335. doi:10.1046/j.1526-100X.1998.06403.x.
^van Liere, L. & Walsby, A.E. (1982). “Interactions of cyanobacteria with light”. In Carr, N.G. and Whitton, B.A.. The Biology of the Cyanobacteria. Blackwell Science Publications. pp. 9-45. ISBN0-520-04717-6.
^ abcWalter, J. M., Coutinho, F. H., Dutilh, B. E., Swings, J., Thompson, F. L. & Thompson, C. C. (2017). “Ecogenomics and taxonomy of Cyanobacteria phylum”. Frontiers in Microbiology8: 2132. doi:10.3389/fmicb.2017.02132.
^Weisse, T. (1993). “Dynamics of autotrophic picoplankton in marine and freshwater ecosystems”. In Jones, J.G.. Advances in Microbial Ecology, Vol. 13. Plenum Press. pp. 327-370. doi:10.1007/978-1-4615-2858-6_8.
^Veldhuis, M.J.W., Kraay, G.W., van Bleijswijk, J.D.L. & Baars, M.A. (1997). “Seasonal and spatial variability in phytoplankton biomass, productivity and growth in the northwestern Indian ocean: the southwest and northeast monsoon, 1992-1993”. Deep Sea Research Part I: Oceanographic Research Papers44: 425-449. doi:10.1016/S0967-0637(96)00116-1.
^Zwirglmaier, K., Jardillier, L., Ostrowski, M., Mazard, S., Garczarek, L., Vaulot, D., Not, F., Massana, R., Utioa, O. & Scanlan, D. J. (2008). “Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic blooms”. Environ. Microbiol.10: 147-161. doi:10.3389/fmicb.2018.01393.
^Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., ... & Vera, C. S. (2013). “Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus”. Proc. Natl. Acad. Sci. U.S.A.110: 9824-9829. doi:10.1073/pnas.1307701110.
^Callieri, C. (2007). “Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs”. Freshwater Reviews1: 1-28. doi:10.1608/FRJ-1.1.1.
^Manage, P.M., Kawabata, Z. & Nakano, S. (2001). “Dynamics of cyanophage-like particles and algicidal bacteria causing Microcystis aeruginosa mortality”. Limnology2: 73-78. doi:10.1007/s102010170002.
^Sukenik, A., Eshkol, R., Livne, A., Hadas, O., Rom, M., Tchernov, D., Vardi, A. & Kaplan, A. (2002). “Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism”. Limnol. Oceanogr.47: 1656-1663. doi:10.4319/lo.2002.47.6.1656.
^Mizuta, S., Imai, H., Chang, K.-H., Doi, H., Nishibe, Y. & Nakano, S. (2010). “Grazing on Microcystis (Cyanophyceae) by testate amoebae with special reference to cyanobacterial abundance and physiological state”. Limnplogy12: 205-211. doi:10.1007/s10201-010-0341-1.
^Zotina, T., Köster, O. & Jüttner, F. (2003). “Photoheterotrophy and light‐dependent uptake of organic and organic nitrogenous compounds by Planktothrix rubescens under low irradiance”. Freshwater Biology48: 1859-1872. doi:10.1046/j.1365-2427.2003.01134.x.
^ abTang, E. P. Y., Tremblay, R. & Vincent, W. F. (1997). “Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature?”. J. Phycol.33: 171-181. doi:10.1111/j.0022-3646.1997.00171.x.
^Shapiro, R. S. (2000). “A comment on the systematic confusion of thrombolites”. Palaios15 (2): 166-169. doi:10.2307/3515503.
^Corsetti, F. A., Awramik, S. M. & Pierce, D. (2003). “A complex microbiota from snowball Earth times: microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA”. Proc. Natl. Acad. Sci. U.S.A.100: 4399-4404. doi:10.1073/pnas.0730560100.
^Ward, D. M. & Castenholz, R. W. (2000). “Cyanobacteria in geothermal habitats”. The Ecology of Cyanobacteria. Springer Netherlands. pp. 37-59. ISBN0-09-941464-3
^Wierzchos, J., Ascaso, C. & McKay, C. P. (2006). “Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert”. Astrobiology6: 415-422. doi:10.1089/ast.2006.6.415.
^Fulda, S., Mikkat, S., Schroder, W., Hagemann, M. (1999). “Isolation of salt-induced periplasmic proteins from Synechocystis sp. strain PCC 6803”. Arch. Microbiol.171: 214-217. doi:10.1007/s002030050702.
^ abcAdams, D. G. (2000). “Symbiotic interactions”. In Whitton, B.A. & Potts, M.. Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publishers. pp. 523-561. ISBN0-09-941464-3
^ abcdAdams, D. G., Duggan, P. S. & Jackson, O. (2012). “Cyanobacterial symbioses”. In Whitton, B.A.. Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer Science+Business Media B.V.. pp. 593-675. ISBN978-94-007-3854-6
^ abcAdams, D. G., Bergman, B., Nierzwicki-Bauer, S. A., Rai, A. N. & Schüßler, A. (2006). “Cyanobacterial-plant symbioses”. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. The Prokaryotes. A Handbook on the Biology of Bacteria, vol 1, 3rd ed. Symbiotic Associations, Biotechnology, Applied Microbiology. Springer. pp. 331-363. ISBN978-1-4757-2193-5
^ abCarpenter, E.J. (2002). “Marine cyanobacterial symbioses”. Biol. Environ. Proc. R Ir Acad.102B: 15-18. doi:10.1007/0-306-48005-0_2.
^Paerl, H. (1992). “Epi- and endobiotic interactions of cyanobacteria”. In Reisser, W.. Algae and Symbioses: Plants, Animals, Fungi, Viruses, Interactions Explored. Biopress Limited. pp. 537-565
^ abRikkinen, J. (2002). “Cyanolichens: an evolutionary overview”. In Rai, A.N., Bergman, B. & Rasmussen, U.. Cyanobacteria in Symbiosis. Kluwer Academic Publishers, Dordrecht. pp. 31-72. ISBN1-4020-0777-9
^Gehrig, H., Schüßler, A. & Kluge, M. (1996). “Geosiphon pyriforme, a fungus forming endocytobiosis withNostoc (Cyanobacteria), is an ancestral member of the glomales: evidence by SSU rRNA analysis”. Journal of Molecular Evolution43: 71-81. doi:10.1007/BF02352301.
^Mollenhauer, D., Mollenhauer, R. & Kluge, M. (1996). “Studies on initiation and development of the partner association in Geosiphon pyriforme (Kütz.) v. Wettstein, a unique endocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme (Kütz.) Hariot”. Protoplasma193: 3-9. doi:10.1007/BF01276630.
^Schüßler, A. & Wolf, E. (2005). “Geosiphon pyriformis - a Glomeromycotan soil fungus forming endosymbiosis with Cyanobacteria”. In Vitro Culture of Mycorrhizas. Soil Biology, Volume 4, Part V. pp. 271-289. ISBN3-540-24027-6
^Usher, K.M. (2008). “The ecology and phylogeny of cyanobacterial symbionts in sponges”. Marine Ecology29: 178-192. doi:10.1111/j.1439-0485.2008.00245.x.
^Lindquist, N., Barber, P.H. & Weisz, J.B. (2005). “Episymbiotic microbes as food and defence for marine isopods: unique symbioses in a hostile environment”. Proc. R Soc. Lond. B272: 1209-1216. doi:10.1098/rspb.2005.3082.
^Münchhoff, J., Hirose, E., Maruyama, T., Sunairi, M., Burns, B.P., & Neilan, B.A. (2007). “Host specificity and phylogeography of the prochlorophyte Prochloron sp., an obligate symbiont in didemnid ascidians”. Environ. Microbiol.9: 890-899. doi:10.1111/j.1462-2920.2006.01209.x.
^ abcFoster, R. A. Carpenter, E. J. & Bergman, B. (2006). “Unicellular cyanobionts in open ocean dinoflagellates, radiolarians, and tintinnids: ultrastructural characterization and immuno-localization of phycoerythrin and nitrogenase”. Journal of Phycology42: 453-463. doi:10.1111/j.1529-8817.2006.00206.x.
^ abcFoster, R. A., Collier, J. L. & Carpenter , E. J. (2006). “Reverse transcription PCR amplification of cyanobacterial symbiont 16S rRNA sequences from single non-photosynthetic eukaryotic marine planktonic host cells”. Journal of Phycology42: 243-250. doi:10.1111/j.1529-8817.2006.00185.x.
^Lee, J.J. (2006). “Algal symbiosis in larger foraminifera”. Symbiosis42: 63-75.
^Escalera, L., Reguera, B., Takishita, K., Yoshimatsu, S., Koike, K. & Koike, K. (2011). “Cyanobacterial endosymbionts in the benthic dinoflagellate Sinophysis canaliculata (Dinophysiales, Dinophyceae)”. Protist162: 304-314. doi:10.1016/j.protis.2010.07.003.
^Rai, A. N., Söderbäck, E. & Bergman, B. (2000). “Cyanobacterium-plant symbioses”. New Phytologist147: 449-481. doi:10.1046/j.1469-8137.2000.00720.x.
^ abAdams, D. G. & Duggan, P. S. (2008). “Cyanobacteria-bryophyte symbioses”. J. Exp. Bot.59: 1047-1058. doi:10.1093/jxb/ern005.
^Peters, G.A. (1991). “Azolla and other plant-cyanobacteria symbioses - aspects of form and function”. Plant Soil137: 25-36. doi:10.1007/BF02187428.
^ abPapaefthimiou, D., Van Hove, C., Lejeune, A., Rasmussen, U. & Wilmotte, A. (2008). “Diversity and host specificity of genus Azolla cyanobionts”. J. Phycol.44: 60-70. doi:10.1111/j.1529-8817.2007.00448.x.
^Costa, J.-L. & Lindblad, P. (2003). “Cyanobacteria in symbiosis with cycads”. In Rai, A.N., Bergman, B. & Rasmussen, U.. Cyanobacteria in Symbiosis. Kluwer Academic Publishers, Dordrecht. pp. 195-205. ISBN1-4020-0777-9
^Bergman, B. (2002). “The Nostoc-Gunnera symbiosis”. In Rai, A.N., Bergman, B. & Rasmussen, U.. Cyanobacteria in Symbiosis. Kluwer Academic Publishers. pp. 207-232. ISBN1-4020-0777-9
^Cox, P.A., Banack, S.A. & Murch, S.J. (2003). “Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam”. Proc. Natl. Acad. Sci. U.S.A.100: 13380-13383. doi:10.1073/pnas.2235808100.
^Jahson, S., Rai, A. N. & Bergman, B. (1995). “Intracellular cyanobiont Richelia intracellularis: ultrastructure and immuno-localisation of phycoerythrin, nitrogenase, Rubisco and glutamine synthetase”. Marine Biology124: 1-8. doi:10.1007/BF00349140.
^Foster, R. A. & Zehr, J. P. (2006). “Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences”. Environ. Microbiol.8: 1913-1925. doi:10.1111/j.1462-2920.2006.01068.x.
^Foster, R.A., Kuypers, M.M.M., Vagner, T., Paerl, R.W., Muzat, N. & Zehr, J.P. (2011). “Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses”. ISME J.5: 1484-1493. doi:10.1038/ismej.2011.26.
^Foster, R.A., Subramaniam, A. & Zehr, J.P. (2009). “Distribution and activity of diazotrophs in the Eastern Equatorial Atlantic”. Environ. Microbiol.11: 741-750. doi:10.1111/j.1462-2920.2008.01796.x.
^White, A.E., Prahl, F.G., Letelier, R.M. & Popp, B.N. (2007). “Summer surface waters in the Gulf of California: prime habitat for biological nitrogen fixation”. Glob. Biogeochem. Cycles21: GB2017. doi:10.1029/2006GB002779.
^Hagino, K., Onuma, R., Kawachi, M. & Horiguchi, T. (2013). “Discovery of an endosymbiotic nitrogen-fixing cyanobacterium UCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae)”. PLoS One8: e81749. doi:10.1371/journal.pone.0081749.
^Thompson, A., Carter, B. J., Turk‐Kubo, K., Malfatti, F., Azam, F. & Zehr, J. P. (2014). “Genetic diversity of the unicellular nitrogen‐fixing cyanobacteria UCYN‐A and its prymnesiophyte host”. Environmental Microbiology16: 3238-3249. doi:10.1111/1462-2920.12490.
^Kneip, C., Voß, C., Lockhart, P. J. & Maier, U. G. (2008). “The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution”. BMC Evol. Biol.8: 30. doi:10.1111/1462-2920.12490.
^Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. (2004). “Discovery of symbiotic nitrogen-fixing cyanobacteria in corals”. Science305: 997-1000. doi:10.1126/science.1099128.
^Lesser, M.P., Falcón, L.I., Rodriguez-Roman, A., Enriquez, S., Hoegh-Guldberg, O. & Iglesias-Prieto, R. (2007). “Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa”. Mar. Ecol. Prog. Ser.346: 143-152. doi:10.3354/meps07008.
^Snoeijs, P. & Murasi, L.W. (2004). “Symbiosis between diatoms and cyanobacterial colonies”. Vie Et Milieu Life Environ54: 163-169.
^Fong, P., Smith, T.B. & Wartian, M.J. (2006). “Epiphytic cyanobacteria maintain shifts to macroalgal dominance on coral reefs following ENSO disturbance”. Ecology87: 1162-1168. doi:10.1890/0012-9658(2006)87[1162:ECMSTM]2.0.CO;2.
^Ohkubo, S., Miyashita, H., Murakami, A., Takeyama, H., Tsuchiya, T. & Mimuro, M. (2006). “Molecular detection of epiphytic Acaryochloris spp. on marine macroalgae”. Appl. Environ. Microbiol.72: 7912-7915. doi:10.1128/AEM.01148-06.
^Ariosa, Y., Quesada, A., Aburto, J., Carrasco, D., Carreres, R., Leganes, F. & Valiente, E.F. (2004). “Epiphytic cyanobacteria on Chara vulgaris are the main contributors to N2 fixation in rice fields”. Appl. Environ. Microbiol.70: 5391-5397. doi:10.1128/AEM.70.9.5391-5397.2004.
^Berg, A., Danielsson, Å. & Svensson, B. H. (2013). “Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss”. Plant and Soil362: 271-278. doi:10.1007/s11104-012-1278-4.
^Solheim, B. & Zielke, M. (2002). “Associations between cyanobacteria and mosses”. In Rai, A.N., Bergman, B. & Rasmussen, U.. Cyanobacteria in Symbiosis. Kluwer Academic Publishers, Dordrecht. pp. 137-152. ISBN1-4020-0777-9.
^Steinke, T.D., Lubke, R.A. & Ward, C.J. (2003). “The distribution of algae epiphytic on pneumatophores of the mangrove, Avicennia marina, at different salinities in the Kosi System”. S. Afr. J. Bot.69: 546-554. doi:10.1016/S0254-6299(15)30293-3.
^Hamisi, M.I., Lyimo, T.J., Muruke, M.H.S. & Bergman, B. (2009). “Nitrogen fixation by epiphytic and epibenthic diazotrophs associated with seagrass meadows along the Tanzanian coast, Western Indian Ocean”. Aquat. Microb. Ecol.57: 33-42. doi:10.3354/ame01323.
^Uku, J., Bjork, M., Bergman, B. & Diez, B. (2007). “Characterization and com- parison of prokaryotic epiphytes associated with three East African seagrasses”. J. Phycol.43: 768-779. doi:10.1111/j.1529-8817.2007.00371.x.
^Tsavkelova, E.A., Lobakova, E.S., Kolomeitseva, G.L., Cherdyntseva, T.A. & Netrusov, A.I. (2003). “Associative cyanobacteria isolated from the roots of epiphytic orchids”. Microbiology72: 92-97. doi:10.1023/A:1022238309083.
^Watson, S.B. (2003). “Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity”. Phycologia42: 332-350. doi:10.2216/i0031-8884-42-4-332.1.
^佐野友春 (2012). “ラン藻の毒素 (ミクロシスチン、ノジュラリン)”. In 渡邉信 (監). 藻類ハンドブック. エヌ・ティー・エス. pp. 243–249. ISBN978-4864690027
^彼谷邦光 (2012). “ラン藻の毒素 (その他の毒素)”. In 渡邉信 (監). 藻類ハンドブック. エヌ・ティー・エス. pp. 251–255. ISBN978-4864690027
^Jang, M.H., Ha, K., Joo, G.J. & Takamura, N. (2003). “Toxin production of cyanobacteria is increased by exposure to zooplankton”. Freshwater Biol.48: 1540-1550.
^ abcd太郎田博之 (2012). “スピルリナ”. In 渡邉信 (監). 藻類ハンドブック. エヌ・ティー・エス. pp. 657–659. ISBN978-4864690027
^Sili, C., Torzillo, G. & Vonshak, A. (2012). “Arthrospira (Spirulina)”. Ecology of Cyanobacteria II. Springer Netherlands. pp. 677-705. ISBN978-94-007-3854-6
^Hemscheidt, T., Puglisi, M.P., Larsen, L.K., Patterson, G.M.L., Moore, R.E., Rios, J.L. & Clardy, J. (1994). “Structure and biosynthesis of borophycin, a new boeseken complex of boric acid from a marine strain of the blue-green alga Nostoc linckia”. J. Org. Chem.59: 3467-3471. doi:10.1021/jo00091a042.
^Choi, H., Mascuch, S. J., Villa, F. A., Byrum, T., Teasdale, M. E., Smith, J. E., ... & Gerwick, W. H. (2012). “Honaucins A−C, potent inhibitors of inflammation and bacterial quorum sensing: synthetic derivatives and structure-activity relationships”. Chemistry & Biology19: 589-598. doi:10.1016/j.chembiol.2012.03.014.
^Grewe, C. B. & Pulz, O. (2012). “The biotechnology of cyanobacteria”. Ecology of Cyanobacteria II. Springer Netherlands. pp. 707-739. ISBN978-94-007-3854-6
^Pisciotta, J. M., Zou, Y. & Baskakov, I. V. (2010). “Light-dependent electrogenic activity of cyanobacteria”. PloS One5: e10821. doi:10.1371/journal.pone.0010821.
^Quintana, N., Van der Kooy, F., Van de Rhee, M. D., Voshol, G. P. & Verpoorte, R. (2011). “Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering”. Applied Microbiology and Biotechnology91: 471-490. doi:10.1007/s00253-011-3394-0.
^Verseux, C., Baque, M., Lehto, K., de Vera, J. P. P., Rothschild, L. J. & Billi, D. (2016). “Sustainable life support on Mars–the potential roles of cyanobacteria”. International Journal of Astrobiology15: 65-92. doi:10.1017/S147355041500021X.
^Battistuzzi, F. U. & Hedges, S. B. (2008). “A major clade of prokaryotes with ancient adaptations to life on land”. Molecular Biology and Evolution26: 335-343. doi:10.1093/molbev/msn247.
^Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J. F., ... & Dodsworth, J. A. (2013). “Insights into the phylogeny and coding potential of microbial dark matter”. Nature499: 431-437. doi:10.1038/nature12352.
^ abSoo, R. M., Skennerton, C. T., Sekiguchi, Y., Imelfort, M., Paech, S. J., Dennis, P. G., ... & Hugenholtz, P. (2014). “An expanded genomic representation of the phylum Cyanobacteria”. Genome Biology and Evolution6: 1031-1045. doi:10.1093/gbe/evu073.
^ abcdSoo, R. M., Hemp, J., Parks, D. H., Fischer, W. W. & Hugenholtz, P. (2017). “On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria”. Science355: 1436-1440. doi:10.1126/science.aal3794.
^Carnevali, P. B. M., Schulz, F., Castelle, C. J., Kantor, R. S., Shih, P. M., Sharon, I., ... & Anantharaman, K. (2019). “Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria”. Nature Communications10: 463. doi:10.1038/s41467-018-08246-y.
^ abShih, P. M., Hemp, J., Ward, L. M., Matzke, N. J. & Fischer, W. W. (2017). “Crown group Oxyphotobacteria postdate the rise of oxygen”. Geobiology15: 19-29. doi:10.1111/gbi.12200.
^ abHolland, H. D. (2006). “The oxygenation of the atmosphere and oceans”. Philosophical Transactions of the Royal Society: Biological Sciences361: 903-915. doi:10.1098/rstb.2006.1838.
^Lepot, K., Benzerara, K., Brown, G. E. & Philippot, P. (2008). “Microbially influenced formation of 2,724-million-year-old stromatolites”. Nature Geoscience1: 118-121. doi:10.1038/ngeo107.
^Schopf, J. W. (2006). “Fossil evidence of Archaean life”. Phil. Trans. R. Soc. B361: 869-885. doi:10.1098/rstb.2006.1834.
^Tomitani, A., Knoll, A. H., Cavanaugh, C. M. & Ohno, T. (2006). “The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives”. Proc. Natl. Acad. Sci. U.S.A.103: 5442-5447. doi:10.1073/pnas.0600999103.
^Farquhar, J. & Wing, B. A. (2003). “Multiple sulfur isotopes and the evolution of the atmosphere”. Earth and Planetary Science Letters213: 1-13. doi:10.1016/S0012-821X(03)00296-6.
^Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. & Bhattacharya, D. (2004). “A molecular timeline for the origin of photosynthetic eukaryotes”. Molecular Biology and Evolution21: 809-818. doi:10.1093/molbev/msh075.
^ abcPonce-Toledo, R. I., Deschamps, P., López-García, P., Zivanovic, Y., Benzerara, K. & Moreira, D. (2017). “An early-branching freshwater cyanobacterium at the origin of plastids”. Current Biology27: 386-391. doi:10.1016/j.cub.2016.11.056.
^Pascher, A. (1931). “Systematische Übersicht über die mit Flagellaten in Zusammenhang stehenden Algenreihen und Versuch einer Einreihung dieser Algenstämme in die Stämme des Pflanzenreiches”. Beihefte Bot Centralbl.48: 317-332.
^Round, F.E. (1973). The Biology of the Algae. 2nd Edition. 278
^Pringsheim, E.G. (1949). “The relationship between bacteria and Myxophyceae”. Bacteriological Reviews13: 47-98.
^Oren, A. (2004). “A proposal for further integration of the cyanobacteria under the Bacteriological Code”. International Journal of Systematic and Evolutionary Microbiology54: 1895-1902. doi:10.1099/ijs.0.03008-0.
^Lewin, R. A. (1976). “Prochlorophyta as a proposed new division of algae”. Nature261: 697-698. doi:10.1038/261697b0.
^Anagnostidis, K. & Komáreek, J. (1990). “Modern approach to the classification system of cyanophytes. 1. Introduction”. Archiv für Hydrobiologie/Algological Studies38/39: 291-302.
^ abcHoffmann, L., Komárek, J. & Kastovský, J. (2005). “System of cyanoprokaryotes (cyanobacteria) - state in 2004”. Algological Studies117: 95-115. doi:10.1127/1864-1318/2005/0117-0095.
^Schirrmeister, B. E., Antonelli, A., Bagheri, H. C. (2011). “The origin of multicellularity in cyanobacteria”. BMC Evol. Biol.11: 45. doi:10.1186/1471-2148-11-45.
^Schirrmeister, B. E., Gugger, M. & Donoghue, P. C. (2015). “Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils”. Palaeontology58: 769-785. doi:10.1111/pala.12178.
^Shih, P. M., Wu, D., Latifi, A., Axen, S. D., Fewer, D. P., Talla, E., ... & Herdman, M. (2013). “Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing”. Proc. Natl. Acad. Sci. U.S.A.110: 1053-1058. doi:10.1073/pnas.1217107110.
^Uyeda, J. C., Harmon, L. J. & Blank, C. E. (2016). “A comprehensive study of cyanobacterial morphological and ecological evolutionary dynamics through deep geologic time”. PloS One11: e0162539. doi:10.1371/journal.pone.0162539.
^ abcKomárek, J., Kaštovský, J., Mareš, J. & Johansen, J.R. (2014). “Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach”. Preslia86: 295-335.
^ abHauer, T. & Komárek, J. (2019) CyanoDB 2.0 - On-line database of cyanobacterial genera. - World-wide electronic publication, Univ. of South Bohemia & Inst. of Botany AS CR, http://www.cyanodb.cz
^Komárek, J. (2018). “Several problems of the polyphasic approach in the modern cyanobacterial system”. Hydrobiologia811: 7-17. doi:10.1007/s10750-017-3379-9.
^Coutinho, F., Tschoeke, D. A., Thompson, F. & Thompson, C. (2016). “Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus”. PeerJ4: e1522. doi:10.7717/peerj.1522.
^Oren, A. (2011). “Cyanobacterial systematics and nomenclature as featured in the international bulletin of bacteriological nomenclature and taxonomy/international journal of systematic bacteriology/international journal of systematic and evolutionary microbiology”. International Journal of Systematic and Evolutionary Microbiology61: 10-15. doi:10.1099/ijs.0.018838-0.
Charles Scott Sherrington Sir Charles Scott Sherrington (Islington, London, 27 November 1857 - Eastbourne, 4 Maret 1952) ialah seorang fisiolog saraf, histolog, bakteriolog, dan patolog Inggris. Belajar kedokteran di Universitas Cambridge, ia lulus pada tahun 1885. Kemudian ia melanjutkan studinya di Berlin bersama dengan Robert Koch dan Rudolf Virchow lalu ke Straßburg di bawah F. Goltz. Pada tahun 1876 Sherrington bergabung dengan St. Thomas Hospital, menjadi murid abadi. Kemudian ia menin...
FilsafatPlato, Kant, Nietzsche, Buddha, Kong Hu Cu, Ibnu SinaPlatoKantNietzscheBuddhaKong Hu CuIbnu Sina Cabang Epistemologi Estetika Etika Hukum Logika Metafisika Politik Sosial Tradisi Afrika Analitis Aristoteles Barat Buddha Eksistensialisme Hindu Islam Jainisme Kontinental Kristen Plato Pragmatisme Timur Tiongkok Yahudi Zaman Klasik Pertengahan Modern Kontemporer Kepustakaan Epistemologi Estetika Etika Filsafat politik Logika Metafisika Filsuf Epistemologi Estetika Etika Filsuf politik da...
Division I 1962-1963 Competizione Division I Sport Calcio Edizione 60ª Organizzatore URBSFA/KBVB Date dal 1º settembre 1962al 9 giugno 1963 Luogo Belgio Partecipanti 16 Formula 1 girone all'italiana Risultati Vincitore Standard Liegi(3º titolo) Retrocessioni Union Saint-GilloiseOlympic Charleroi Statistiche Miglior marcatore Victor Wégria (24) Incontri disputati 240 Gol segnati 640 (2,67 per incontro) Cronologia della competizione 1961-1962 1963-1964 Manuale La Di...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Topik artikel ini mungkin tidak memenuhi kriteria kelayakan umum. Harap penuhi kelayakan artikel dengan: menyertakan sumber-sumber tepercaya yang independen terhadap subjek dan sebaiknya hindari sumber-sumber trivial. Jika tidak dipenuhi, artikel ini h...
Television game show season Season of television series I Can See Your Voice IndonesiaSeason 3Starring Wendy Armoko Vega Darwanti [id] Lee Jeong-hoon [ko] Anwar Sanjaya [id] Ayu Ting Ting Hosted by Raffi Ahmad Indra Herlambang [id] Winners Good singers: 12 Bad singers: 8 No. of episodes18ReleaseOriginal networkMNCTVOriginal release11 March (2018-03-11) –16 July 2018 (2018-07-16)Season chronology← PreviousSeason 2Next&...
هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. حمّام الفضوة من حمامات بغداد العامة القديمة ويقع في فضوة عرب في الجانب الشرقي من بغداد في محلة باب الشيخ.[1] المصادر ^ مجلة التراث الشعبي، دار الشؤون الثقافية العامة، العر�...
Pour les articles homonymes, voir Prigogine. Ilya PrigogineIlya Prigogine en 1977Cette illustration a été retouchée par une IA (voir l'original).Titre de noblesseVicomteBiographieNaissance 25 janvier 1917MoscouDécès 28 mai 2003 (à 86 ans)BruxellesNom dans la langue maternelle Илья́ Рома́нович Приго́жин ou Ilya Romanovich PrigogineNationalité Russe (1917-1949)Belge (1949-2003)Formation Université libre de BruxellesActivités Philosophe, professeur d'univer...
Official script of the Serbian language Serbian alphabet redirects here. For the Serbian Latin alphabet, see Gaj's Latin alphabet. Serbian Cyrillic alphabetСрпска ћирилицаScript type Alphabet Time period9th century – presentLanguagesSerbianRelated scriptsParent systemsEgyptian hieroglyphs[1]Phoenician alphabetGreek alphabet (partly Glagolitic alphabet)Early Cyrillic alphabetSerbian Cyrillic alphabetChild systemsMacedonian alphabet (partly)Montenegrin Cyrillic (partly)I...
Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...
South Korean rapperIn this Korean name, the family name is Kim. CheetahBackground informationBirth nameKim Eun-youngBorn (1990-05-25) May 25, 1990 (age 33)Busan, South KoreaGenresKorean hip hopOccupation(s)RapperYears active2010–presentLabelsMLDKorean nameHangul치타Revised RomanizationChitaMcCune–ReischauerCh'it'aBirth nameHangul김은영Revised RomanizationGim Eun-yeongMcCune–ReischauerKim Ŭnyŏng Musical artist Kim Eun-young (Korean: 김은영; born May 25, 1990), kno...
Compendium of cloud types For other uses, see Cloud atlas (disambiguation). An example of a Cloud Atlas A cloud atlas is a pictorial key (or an atlas) to the nomenclature of clouds. Early cloud atlases were an important element in the training of meteorologists and in weather forecasting, and the author of a 1923 atlas stated that increasing use of the air as a means of transportation will require and lead to a detailed knowledge of all the secrets of cloud building.[1] History Throug...
2000 studio album by EverclearSongs from an American Movie Vol. Two: Good Time for a Bad AttitudeStudio album by EverclearReleasedNovember 21, 2000RecordedSunset SoundHollywood, CaliforniaGenreAlternative rock, post-grungeLength44:36LabelCapitolCDP 7243 5 30620 2 6ProducerArt AlexakisEverclear chronology Songs from an American Movie Vol. One: Learning How to Smile(2000) Songs from an American Movie Vol. Two: Good Time for a Bad Attitude(2000) Slow Motion Daydream(2003) Professional r...
Fairy tales from Ukraine Early Ukrainian fairy tale illustration from 1894 A Ukrainian fairy tale, Kazka (Ukrainian: казка), is a fairy tale from Ukraine. The plural of казка is казки (kazky). In times of oral tradition, they were used to transmit knowledge and history.[1] Description Ukrainian folk literature is vast.[2][3] Many Ukrainian fairy tales feature forests and grassy plains, with people working as farmers or hunters.[1] Many Ukrainian ...
2022 American fantasy television series WillowGenre Adventure High fantasy Based onCharactersby George LucasDeveloped byJonathan KasdanStarring Warwick Davis Ellie Bamber Ruby Cruz Erin Kellyman Tony Revolori Amar Chadha-Patel Dempsey Bryk Composers James Newton Howard[1] Xander Rodzinski Country of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes8ProductionExecutive producers Jonathan Kasdan Kathleen Kennedy Michelle Rejwan Ron Howard Samie Kim Falvey Roopesh...
Kiruna Stamell Kiruna Stamell (Paddington, 13 marzo 1981) è un'attrice australiana. Indice 1 Biografia 2 Filmografia 2.1 Cinema 2.2 Televisione 3 Note 4 Collegamenti esterni Biografia Nata a Paddington, un quartiere di Sydney, alla nascita le è stata diagnosticata una forma di nanismo che le ha osteggiato il regolare sviluppo fisico.[1] Tuttavia già all'età di tre anni ha imparato a ballare la danza contemporanea e il tip tap. Nel 1994 ha vinto il South Pacific Silver Star Tap Dan...
В Википедии есть статьи о других людях с такой фамилией, см. Глинка. Михаил Глинка Фотография Сергея Левицкого, 1856 Основная информация Дата рождения 20 мая (1 июня) 1804[1] Место рождения Новоспасское, Ельнинский уезд, Смоленская губерния, Российская империя[1][4...
В Википедии есть статьи о других людях с фамилией Кунен. Ян Куненнидерл. Jan Kounen Дата рождения 2 мая 1964(1964-05-02) (60 лет) Место рождения Утрехт, Утрехт, Нидерланды[1] Гражданство Франция Профессия кинорежиссёр, сценарист, кинооператор, актёр, кинопродюсер, клипмей...
German audio streaming service SoundCloudLogo used since 2010Screenshot Screenshot of the desktop version of SoundCloudType of businessPrivateType of siteMusic streamingInternet community (Social community)Available inEnglishFounded27 August 2007 (2007-08-27)HeadquartersBerlin, Germany[1]Country of originGermanyArea servedWorldwideOwnerSoundCloud Global Limited & Co. KGFounder(s)Alexander LjungEric WahlforssKey peopleMike Weissman (CEO)[2]Elia...