比較している2つの分布が類似している場合、Q-Qプロットの点は、ほぼ恒等線(英語版)y = x 上に位置する。分布が線形関係にある場合、Q-Qプロットの点は、ほぼ直線上に位置するが、必ずしも直線 y = x 上に位置するとは限らない。Q-Qプロットは、位置-尺度分布族(英語版)のパラメータを推定するためのグラフィカルな手法としても使用できる。
「確率プロット」(英: probability plot)という用語は、特にQ-Qプロットを指すこともあれば、場合によってはより一般的なプロットの種類や、またあまり一般的でないP-Pプロット(英語版)を指すこともある。確率プロット相関係数プロット(英語版)(英: probability plot correlation coefficient plot, PPCC plot)は、Q-Qプロットの概念から派生した量であり、観察データと適合した分布との適合度を評価し、分布をデータに適合させる手段として使用されることもある。
より抽象的に言えば[4]、関連する分位関数F−1 と G−1 (CDFの逆関数が分位関数である)を有する2つの累積確率分布関数 F と G が与えられると、Q-Qプロットは、q の値の範囲について、F の q 番目の分位数に対する G の q 番目の分位数をプロットする。したがって、Q-Qプロットは、[0, 1] 上に実平面 R2 の値でインデックス付けされたパラメトリック曲線である。
解釈
Q-Qプロットにプロットされた点は、左から右に見たとき常に非減少(単調増加)となる。比較される2つの分布が同一である場合、Q-Qプロットは45°の直線 y = x に従う。一方の分布の値の線形変換後に2つの分布が一致する場合、Q-Qプロットは何らかの直線をたどるが、必ずしも直線 y = x とは限らない。Q-Qプロットの傾きが直線 y = x よりも緩やかであれば、横軸にプロットされた分布は、縦軸にプロットされた分布よりも分散が大きい。逆に、Q-Qプロットの傾きが直線 y = x よりも急であれば、縦軸にプロットされた分布は、横軸にプロットされた分布よりも分散が大きいことになる。Q-Qプロットはしばしば湾曲あるいはS字形状であり、それぞれ、一方の分布が他方よりも歪んでいる、あるいは裾の重い分布であることを示す。
分位数間の線形回帰の切片と傾きは、標本の相対位置と相対スケールの尺度を与える。横軸にプロットされた分布の中央値が 0 である場合、回帰直線の切片は位置の尺度に対応し、傾きはスケールの尺度に対応する。中央値間の距離は、Q-Qプロットに反映される相対的位置のもう1つの尺度である。確率プロット相関係数(英: probability plot correlation coefficient, PPCC plot)は、対をなす標本の分位数間の相関係数である。相関係数が1に近づくほど、分布はシフトし、互いに線形変換された分布に近づく。単一の形状パラメータを有する分布の場合、確率プロット相関係数プロットは、形状パラメータを推定する方法となる。形状パラメータのさまざまな値に対する相関係数を単純に計算し、異なる種類の分布を比較する場合と同様に、最も適合するものを使用する。Q-Qプロットのもう1つの一般的な用途は、正規確率プロットのように、標本の分布を標準正規分布N(0,1) のような理論的分布と比較することである。2組の標本データを比較する場合と同様、データを順序付けし(形式的には順序統計量を計算する)、それらを理論的分布の特定の分位数に対してプロットする[3]。
プロット位置
理論的分布からの分位数の選択は、状況や目的に依存しうる。大きさ n の標本が与えられたとき、サンプリング分布が実現する分位数であるため、k = 1, …, n に対して k / n を用いる。最後の n / n は、100パーセンタイル(理論的分布の最大値)に対応し、これは無限大になりうる。他にも、(k − 0.5) / n を使用したり、あるいは k / (n + 1) を用いて、すべての点の間、および最も外側の2点と [0, 1] 区間の端の間の距離が等しくなるように n 点を配置する手法がある[6]。
この他にも、理論的もしくは経験的文脈を伴うシミュレーションに基づく形式的あるいは発見的なものなど、多くの手法が提案されている。以下でこれらについて説明する。より詳しい問題に、ドイツ戦車問題(英語版)として知られる最大値の選択(母集団の最大値の推定)があり、これには「標本の最大値にギャップを加えた」のような解が存在し、最も単純には m + m/n − 1 となる。この間隔一様化へのより形式的な応用はパラメータの最大間隔推定(英語版)である。
一様分布の順序統計量の期待値
k / (n + 1) を用いる手法は、(n + 1) 個の無作為に抽出した値の最後の値が、最初の n 個の無作為に抽出した値の k 番目に小さな値を超えない確率に従って点をプロットすることと等価である[7][8]。
^Weibull, Waloddi (1939), “The Statistical Theory of the Strength of Materials”, IVA Handlingar, Royal Swedish Academy of Engineering Sciences (151)
^Madsen, H.O. (1986), Methods of Structural Safety
^Makkonen, L. (2008), “Bringing closure to the plotting position controversy”, Communications in Statistics – Theory and Methods37 (3): 460–467, doi:10.1080/03610920701653094
^Hazen, Allen (1914), “Storage to be provided in the impounding reservoirs for municipal water supply”, Transactions of the American Society of Civil Engineers (77): 1547–1550