Teorema di Cauchy (analisi matematica)

Il teorema degli incrementi finiti di Cauchy è una generalizzazione del teorema di Lagrange.

Significato geometrico del teorema di Cauchy.

Enunciato

Siano due funzioni reali di variabile reale continue in e derivabili in .

Allora esiste almeno un punto tale che

[1]

Si noti che se (e dunque in particolare ), l'equazione si può scrivere nella forma equivalente

Dimostrazione del teorema

Si consideri la funzione di variabile reale definita nell'intervallo come

Questa funzione è continua nell'intervallo e derivabile in , e

Da cui .

La funzione soddisfa quindi le ipotesi del teorema di Rolle, per cui esiste un punto in cui , cioè

Applicazioni

  • Considerando in particolare la funzione , si ottiene l'affermazione del teorema di Lagrange.
  • Il teorema di Cauchy può essere utilizzato per dimostrare la regola di De L'Hôpital.

Note

  1. ^ P. M. Soardi, p. 222.

Bibliografia

Voci correlate

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica