Surface wave

A diving grebe creates surface waves.

In physics, a surface wave is a mechanical wave that propagates along the interface between differing media. A common example is gravity waves along the surface of liquids, such as ocean waves. Gravity waves can also occur within liquids, at the interface between two fluids with different densities. Elastic surface waves can travel along the surface of solids, such as Rayleigh or Love waves. Electromagnetic waves can also propagate as "surface waves" in that they can be guided along with a refractive index gradient or along an interface between two media having different dielectric constants. In radio transmission, a ground wave is a guided wave that propagates close to the surface of the Earth.[1]

Mechanical waves

In seismology, several types of surface waves are encountered. Surface waves, in this mechanical sense, are commonly known as either Love waves (L waves) or Rayleigh waves. A seismic wave is a wave that travels through the Earth, often as the result of an earthquake or explosion. Love waves have transverse motion (movement is perpendicular to the direction of travel, like light waves), whereas Rayleigh waves have both longitudinal (movement parallel to the direction of travel, like sound waves) and transverse motion. Seismic waves are studied by seismologists and measured by a seismograph or seismometer. Surface waves span a wide frequency range, and the period of waves that are most damaging is usually 10 seconds or longer. Surface waves can travel around the globe many times from the largest earthquakes. Surface waves are caused when P waves and S waves come to the surface.

Examples are the waves at the surface of water and air (ocean surface waves). Another example is internal waves, which can be transmitted along the interface of two water masses of different densities.

In theory of hearing physiology, the traveling wave (TW) of Von Bekesy, resulted from an acoustic surface wave of the basilar membrane into the cochlear duct. His theory purported to explain every feature of the auditory sensation owing to these passive mechanical phenomena. Jozef Zwislocki, and later David Kemp, showed that that is unrealistic and that active feedback is necessary.

Electromagnetic waves

Ground waves are radio waves propagating parallel to and adjacent to the surface of the Earth, following the curvature of the Earth. This radiative ground wave is known as Norton surface wave, or more properly Norton ground wave, because ground waves in radio propagation are not confined to the surface.

Another type of surface wave is the non-radiative, bound-mode Zenneck surface wave or Zenneck–Sommerfeld surface wave.[2][3][4][5][6] The earth has one refractive index and the atmosphere has another, thus constituting an interface that supports the guided Zenneck wave's transmission. Other types of surface wave are the trapped surface wave,[7] the gliding wave and Dyakonov surface waves (DSW) propagating at the interface of transparent materials with different symmetry.[8][9][10][11] Apart from these, various types of surface waves have been studied for optical wavelengths.[12]

Microwave field theory

Within microwave field theory, the interface of a dielectric and conductor supports "surface wave transmission". Surface waves have been studied as part of transmission lines and some may be considered as single-wire transmission lines.

Characteristics and utilizations of the electrical surface wave phenomenon include:

  • The field components of the wave diminish with distance from the interface.
  • Electromagnetic energy is not converted from the surface wave field to another form of energy (except in leaky or lossy surface waves)[13] such that the wave does not transmit power normal to the interface, i.e. it is evanescent along that dimension.[14]
  • In coaxial cable in addition to the TEM mode there also exists a transverse-magnetic (TM) mode[15] which propagates as a surface wave in the region around the central conductor. For coax of common impedance this mode is effectively suppressed but in high impedance coax and on a single central conductor without any outer shield, low attenuation and very broadband propagation is supported. Transmission line operation in this mode is called E-Line.

Surface plasmon polariton

The E-field of a surface plasmon polariton at a silver–air interface, at a frequency corresponding to a free-space wavelength of 10μm. At this frequency, the silver behaves approximately as a perfect electric conductor, and the SPP is called a Sommerfeld–Zenneck wave, with almost the same wavelength as the free-space wavelength.

The surface plasmon polariton (SPP) is an electromagnetic surface wave that can travel along an interface between two media with different dielectric constants. It exists under the condition that the permittivity of one of the materials [6] forming the interface is negative, while the other one is positive, as is the case for the interface between air and a lossy conducting medium below the plasma frequency. The wave propagates parallel to the interface and decays exponentially vertical to it, a property called evanescence. Since the wave is on the boundary of a lossy conductor and a second medium, these oscillations can be sensitive to changes to the boundary, such as the adsorption of molecules by the conducting surface.[16]

Sommerfeld–Zenneck surface wave

The Sommerfeld–Zenneck wave or Zenneck wave is a non-radiative guided electromagnetic wave that is supported by a planar or spherical interface between two homogeneous media having different dielectric constants. This surface wave propagates parallel to the interface and decays exponentially vertical to it, a property known as evanescence. It exists under the condition that the permittivity of one of the materials forming the interface is negative, while the other one is positive, as for example the interface between air and a lossy conducting medium such as the terrestrial transmission line, below the plasma frequency. Its electric field strength falls off at a rate of e-αd/√d in the direction of propagation along the interface due to two-dimensional geometrical field spreading at a rate of 1/√d, in combination with a frequency-dependent exponential attenuation (α), which is the terrestrial transmission line dissipation, where α depends on the medium’s conductivity. Arising from original analysis by Arnold Sommerfeld and Jonathan Zenneck of the problem of wave propagation over a lossy earth, it exists as an exact solution to Maxwell's equations.[17] The Zenneck surface wave, which is a non-radiating guided-wave mode, can be derived by employing the Hankel transform of a radial ground current associated with a realistic terrestrial Zenneck surface wave source.[6] Sommerfeld-Zenneck surface waves predict that the energy decays as R−1 because the energy distributes over the circumference of a circle and not the surface of a sphere. Evidence does not show that in radio space wave propagation, Sommerfeld-Zenneck surfaces waves are a mode of propagation as the path-loss exponent is generally between 20 dB/dec and 40 dB/dec.

See also

People
Other
  • Ground constants, the electrical parameters of earth
  • Near and far field, the radiated field that is within one quarter of a wavelength of the diffracting edge or the antenna and beyond.
  • Skin effect, the tendency of an alternating electric current to distribute itself within a conductor so that the current density near the surface of the conductor is greater than that at its core.
  • Surface wave inversion
  • Green's function, a function used to solve inhomogeneous differential equations subject to boundary conditions.

References

  1. ^ Public Domain This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22. (in support of MIL-STD-188).
  2. ^ The Physical Reality of Zenneck's Surface Wave.
  3. ^ Hill, D. A., and J. R. Wait (1978), Excitation of the Zenneck surface wave by a vertical aperture, Radio Sci., 13(6), 969–977, doi:10.1029/RS013i006p00969.
  4. ^ Goubau, G., "Über die Zennecksche Bodenwelle," (On the Zenneck Surface Wave), Zeitschrift für Angewandte Physik, Vol. 3, 1951, Nrs. 3/4, pp. 103–107.
  5. ^ Barlow, H.; Brown, J. (1962). "II". Radio Surface Waves. London: Oxford University Press. pp. 10–12.
  6. ^ a b c Corum, K. L., M. W. Miller, J. F. Corum, "Surface Waves and the Crucial Propagation Experiment,” Proceedings of the 2016 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS 2016), Baylor University, Waco, TX, March 31-April 1, 2016, IEEE, MTT-S, ISBN 9781509027569.
  7. ^ Wait, James, "Excitation of Surface Waves on Conducting, Stratified, Dielectric-Clad, and Corrugated Surfaces," Journal of Research of the National Bureau of Standards Vol. 59, No.6, December 1957.
  8. ^ Dyakonov, M. I. (April 1988). "New type of electromagnetic wave propagating at an interface". Soviet Physics JETP. 67 (4): 714. Bibcode:1988JETP...67..714D.
  9. ^ Takayama, O.; Crasovan, L. C., Johansen, S. K.; Mihalache, D, Artigas, D.; Torner, L. (2008). "Dyakonov Surface Waves: A Review". Electromagnetics. 28 (3): 126–145. doi:10.1080/02726340801921403. S2CID 121726611.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Takayama, O.; Crasovan, L. C., Artigas, D.; Torner, L. (2009). "Observation of Dyakonov surface waves". Physical Review Letters. 102 (4): 043903. Bibcode:2009PhRvL.102d3903T. doi:10.1103/PhysRevLett.102.043903. PMID 19257419. S2CID 14540394.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Takayama, O.; Artigas, D., Torner, L. (2014). "Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves". Nature Nanotechnology. 9 (6): 419–424. Bibcode:2014NatNa...9..419T. doi:10.1038/nnano.2014.90. PMID 24859812.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Takayama, O.; Bogdanov, A. A., Lavrinenko, A. V. (2017). "Photonic surface waves on metamaterial interfaces". Journal of Physics: Condensed Matter. 29 (46): 463001. Bibcode:2017JPCM...29T3001T. doi:10.1088/1361-648X/aa8bdd. PMID 29053474.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Liu, Hsuan-Hao; Chang, Hung-Chun (2013). "Leaky Surface Plasmon Polariton Modes at an Interface Between Metal and Uniaxially Anisotropic Materials". IEEE Photonics Journal. 5 (6): 4800806. Bibcode:2013IPhoJ...500806L. doi:10.1109/JPHOT.2013.2288298.
  14. ^ Collin, R. E., Field Theory of Guided Waves, Chapter 11 "Surface Waveguides". New York: Wiley-IEEE Press, 1990.
  15. ^ "(TM) mode" (PDF). corridor.biz. Archived (PDF) from the original on 2022-10-09. Retrieved 4 April 2018.
  16. ^ S. Zeng; Baillargeat, Dominique; Ho, Ho-Pui; Yong, Ken-Tye (2014). "Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications". Chemical Society Reviews. 43 (10): 3426–3452. doi:10.1039/C3CS60479A. hdl:10220/18851. PMID 24549396.
  17. ^ Barlow, H.; Brown, J. (1962). Radio Surface Waves. London: Oxford University Press. pp. v, vii.

Further reading

Standards and doctrines

Books

  • Barlow, H.M., and Brown, J., "Radio Surface Waves", Oxford University Press 1962.
  • Budden, K. G., "Radio waves in the ionosphere; the mathematical theory of the reflection of radio waves from stratified ionised layers". Cambridge, Eng., University Press, 1961. LCCN 61016040 /L/r85
  • Budden, K. G., "The wave-guide mode theory of wave propagation". London, Logos Press; Englewood Cliffs, N.J., Prentice-Hall, c1961. LCCN 62002870 /L
  • Budden, K. G., " The propagation of radio waves : the theory of radio waves of low power in the ionosphere and magnetosphere". Cambridge (Cambridgeshire); New York : Cambridge University Press, 1985. ISBN 0-521-25461-2 LCCN 84028498
  • Collin, R. E., "Field Theory of Guided Waves". New York: Wiley-IEEE Press, 1990.
  • Foti, S., Lai, C.G., Rix, G.J., and Strobbia, C., "“Surface Wave Methods for Near-Surface Site Characterization”", CRC Press, Boca Raton, Florida (USA), 487 pp., ISBN 9780415678766, 2014 <https://www.crcpress.com/product/isbn/9780415678766>
  • Sommerfeld, A., "Partial Differential Equations in Physics" (English version), Academic Press Inc., New York 1949, chapter 6 – "Problems of Radio".
  • Polo Jr., J. A., Mackay, T. G., and Lakhtakia, A., "Electromagnetic Surface Waves: A Modern Perspective". Waltham, MA, USA: Elsevier, 2013 <https://www.elsevier.com/books/electromagnetic-surface-waves/polo/978-0-12-397024-4>.
  • Rawer, K.,"Wave Propagation in the Ionosphere", Dordrecht, Kluwer Acad.Publ. 1993.
  • Sommerfeld, A., "Partial Differential Equations in Physics" (English version), Academic Press Inc., New York 1949, chapter 6 – "Problems of Radio".
  • Weiner, Melvin M., "Monopole antennas" New York, Marcel Dekker, 2003. ISBN 0-8247-0496-7
  • Wait, J. R., "Electromagnetic Wave Theory", New York, Harper and Row, 1985.
  • Wait, J. R., "The Waves in Stratified Media". New York: Pergamon, 1962.
  • Waldron, Richard Arthur, "Theory of guided electromagnetic waves". London, New York, Van Nostrand Reinhold, 1970. ISBN 0-442-09167-2 LCCN 69019848 //r86
  • Weiner, Melvin M., "Monopole antennas" New York, Marcel Dekker, 2003. ISBN 0-8247-0496-7

Journals and papers

Zenneck, Sommerfeld, Norton, and Goubau
  • J. Zenneck, (translators: P. Blanchin, G. Guérard, É. Picot), "Précis de télégraphie sans fil : complément de l'ouvrage : Les oscillations électromagnétiques et la télégraphie sans fil", Paris : Gauthier-Villars, 1911. viii, 385 p. : ill.; 26 cm. (Tr. "Precisions of wireless telegraphy: complement of the work: Electromagnetic oscillations and wireless telegraphy.")
  • J. Zenneck, "Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie", Annalen der Physik, vol. 23, pp. 846–866, Sept. 1907. (Tr. "About the propagation of electromagnetic plane waves along a conductor plane and their relationship to wireless telegraphy.")
  • J. Zenneck, "Elektromagnetische Schwingungen und drahtlose Telegraphie", gart, F. Enke, 1905. xxvii, 1019 p. : ill.; 24 cm. (Tr. "Electromagnetic oscillations and wireless telegraphy.")
  • J. Zenneck, (translator: A.E. Seelig) "Wireless telegraphy,", New York [etc.] McGraw-Hill Book Company, inc., 1st ed. 1915. xx, 443 p. illus., diagrs. 24 cm. LCCN 15024534 (ed. "Bibliography and notes on theory" pp. 408–428.)
  • A. Sommerfeld, "Über die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes", Ann. der Physik und Chemie, vol. 67, pp. 233–290, Dec 1899. (Tr. "Propagation of electro-dynamic waves along a cylindric conductor.")
  • A. Sommerfeld, "Über die Ausbreitung der Wellen in der drahtlosen Telegraphie", Annalen der Physik, Vol. 28, pp. 665–736, March 1909. (Tr. "About the Propagation of waves in wireless telegraphy.")
  • A. Sommerfeld, "Propagation of waves in wireless telegraphy," Ann. Phys., vol. 81, pp. 1367–1153, 1926.
  • K. A. Norton, "The propagation of radio waves over the surface of the earth and in the upper atmosphere," Proc. IRE, vol. 24, pp. 1367–1387, 1936.
  • K. A. Norton, "The calculations of ground wave field intensity over a finitely conducting spherical earth," Proc. IRE, vol. 29, pp. 623–639, 1941.
  • G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys., vol. 21, pp. 1119–1128; November,1950.
  • G. Goubau, “Über die Zennecksche Bodenwelle,” (Tr."On the Zenneck Surface Wave."), Zeitschrift für Angewandte Physik, Vol. 3, 1951, Nrs. 3/4, pp. 103–107.
Wait
  • Wait, J. R., "Lateral Waves and the Pioneering Research of the Late Kenneth A Norton".
  • Wait, J. R., and D. A. Hill, "Excitation of the HF surface wave by vertical and horizontal apertures". Radio Science, 14, 1979, pp 767–780.
  • Wait, J. R., and D. A. Hill, "Excitation of the Zenneck Surface Wave by a Vertical Aperture", Radio Science, Vol. 13, No. 6, November–December, 1978, pp. 969–977.
  • Wait, J. R., "A note on surface waves and ground waves", IEEE Transactions on Antennas and Propagation, Nov 1965. Vol. 13, Issue 6, pp. 996–997 ISSN 0096-1973
  • Wait, J. R., "The ancient and modern history of EM ground-wave propagation". IEEE Antennas Propagat. Mag., vol. 40, pp. 7–24, Oct. 1998.
  • Wait, J. R., "Appendix C: On the theory of ground wave propagation over a slightly roughned curved earth", Electromagnetic Probing in Geophysics. Boulder, CO., Golem, 1971, pp. 37–381.
  • Wait, J. R., "Electromagnetic surface waves", Advances in Radio Research, 1, New York, Academic Press, 1964, pp. 157–219.
Others
  • R. E. Collin, "Hertzian Dipole Radiating Over a Lossy Earth or Sea: Some Early and Late 20th-Century Controversies", Antennas and Propagation Magazine, 46, 2004, pp. 64–79.
  • F. J. Zucker, "Surface wave antennas and surface wave excited arrays", Antenna Engineering Handbook, 2nd ed., R. C. Johnson and H. Jasik, Eds. New York: McGraw-Hill, 1984.
  • Yu. V. Kistovich, "Possibility of Observing Zenneck Surface Waves in Radiation from a Source with a Small Vertical Aperture", Soviet Physics Technical Physics, Vol. 34, No.4, April, 1989, pp. 391–394.
  • V. I. Baĭbakov, V. N. Datsko, Yu. V. Kistovich, "Experimental discovery of Zenneck's surface electromagnetic waves", Sov Phys Uspekhi, 1989, 32 (4), 378–379.
  • Corum, K. L. and J. F. Corum, "The Zenneck Surface Wave", Nikola Tesla, Lightning Observations, and Stationary Waves, Appendix II. 1994.
  • M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths". J. Appl. Phys., vol. 21, pp. 1119–1128; November,
  • M. J. King and J. C. Wiltse, "Surface-Wave Propagation on a Dielectric Rod of Electric Cross-Section." Electronic Communications, Inc., Tirnonium: kld. Sci. Rept.'No. 1, AFCKL Contract No. AF 19(601)-5475; August, 1960.
  • T. Kahan and G. Eckart, "On the Electromagnetic Surface Wave of Sommerfeld", Phys. Rev. 76, 406–410 (1949).

Other media

  • L.A. Ostrovsky (ed.), "Laboratory modeling and theoretical studies of surface wave modulation by a moving sphere", m, Oceanic and Atmospheric Research Laboratories, 2002. OCLC 50325097

Read other articles:

У Вікіпедії є статті про інші значення цього терміна: Петергоф (значення). місто Петергоф Герб Прапор Вид на Великий Петергофський палац Країна  Росія Суб'єкт Російської Федерації Санкт-Петербург Код ЗКАТУ: 40290501 Код ЗКТМО: 40395000 Основні дані Час заснування 1710 Статус міс�...

 

Distrik Da'an distrik di Taiwan Tempat categoria:Articles mancats de coordenades Negara dengan pengakuan terbatasTaiwanKotaTaipei NegaraTaiwan Pembagian administratifLongmen Village (en) Minzhao Village (en) Minhui Village (en) Zhengsheng Village (en) Checeng Village (en) Changlong Village (en) Quan'an Village (en) Zhu'an Village (en) Yongkang Village (en) Yi'an Village (en) Yi Village (en) Wolong Village (en) Xuefu Village (en) He'an Village (en) Huxiao Village (en) Huasheng Village (en)...

 

Finnish tennis player This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Jarkko Nieminen – news · newspapers · books · scholar · JSTOR (September 2015) (Learn how and when to remove this template m...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: NET. Good People – berita · surat kabar · buku · cendekiawan · JSTOR NET. Good PeopleSingkatanNGPTanggal pendirian27 September 2017 (2017-09-27)StatusKomunitasKantor pusatThe East Lt. 27-29, Jl. Dr. Ide ...

 

Individual who portrays a disaster victim Crisis Actors redirects here. For the Lemon Demon song, see Spirit Phone. Emergency medical technicians from the 96th Medical Group move an airman pretending to be wounded toward safety during an active shooter exercise at Eglin Air Force Base in Florida in 2014. A crisis actor (aka actor-patient or actor victim) is a trained actor, role player, volunteer, or other person engaged to portray a disaster victim during emergency drills to train first resp...

 

World War II campaign in Russia This article is about the 1941 battle. For other uses, see Battle of Moscow (disambiguation). Operation Typhoon redirects here. For the 1943 German landing on Leros, see Battle of Leros. Battle of MoscowPart of the Eastern Front of World War IISoviet anti-aircraft gunners on theroof of the Hotel MoskvaDate30 September 1941 – 7 January 1942(3 months, 1 week and 1 day)LocationMoscow Oblast, Russian SFSR, USSRResult Soviet victory End of Oper...

Kermes Kermes echinatus Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Hemiptera Superfamili: Coccoidea Famili: Kermesidae Genus: KermesLatreille, 1798 Spesies Lihat teks Kermes adalah suatu genus dari superfamilia serangga sisik (Coccoidea; scale insect) dalam ordo Hemiptera. Serangga berbentuk seperti ulat cacing ini memakan sari getah pohon ek hijau (sap of evergreen oak). Jenis betina menghasilkan pewarna merah, yang disebut kirmizi (Inggris: kermes), ya...

 

Ontario Hockey League team in Flint, Michigan Flint FirebirdsCityFlint, MichiganLeagueOntario Hockey LeagueConferenceWesternDivisionWestFounded1990 (1990)Operated2015–presentHome arenaDort Financial CenterColorsNavy Blue, White, Orange and Silver       Owner(s)Rolf NilsenGeneral managerDave McParlanHead coachPaul FlacheAffiliateLeamington Flyers (OJHL)Websitewww.flintfirebirds.comFranchise history1990–1992Detroit Compuware Ambassadors1992–1995Detroit Junior...

 

† Египтопитек Реконструкция внешнего вида египтопитека Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:Четвероно...

American politician from Virginia (born 1944) Louise LucasPresident pro tempore of the Virginia SenateIncumbentAssumed office January 8, 2020Preceded byStephen NewmanMember of the Virginia Senatefrom the 18th districtIncumbentAssumed office January 8, 1992Preceded byHoward Anderson Personal detailsBornLillie Louise Boone (1944-01-22) January 22, 1944 (age 80)Portsmouth, Virginia, U.S.Political partyDemocraticSpouseOtis LucasEducationNorfolk State University (BS, MA) Lillie Louise...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

Geraldine ViswanathanViswanathan tahun 2018Lahir20 Juni 1995 (umur 28)Newcastle, New South Wales, AustraliaPekerjaanAktrisTahun aktif2014–sekarang Geraldine Indira Viswanathan (/ˌvɪswəˈnɑːθən/ VISS-wə-NAH-thən;[1][2] lahir 20 Juni 1995)[3] adalah seorang aktris asal Australia. Dia mendapat perhatian setelah berperan sebagai Kayla dalam film Blockers tahun 2018,[4] yang mana Refinery29 menyebutnya sebagai bintang terobosan film.[5]...

 

1931 film The True JacobGerman film posterGermanDer wahre Jakob Directed byHans SteinhoffWritten byFranz Arnold (play)Ernst Bach(play)Walter SchleeWalter WassermannProduced byAnatol Potock [de]Lothar StarkStarringRalph Arthur RobertsAnny AhlersFelix BressartCinematographyKarl PuthMusic byArtur GuttmannHans J. SalterProductioncompanyLothar Stark-FilmDistributed byMesstro-FilmRelease date 16 March 1931 (1931-03-16) Running time82 minutesCountryGermanyLanguageGerman T...

 

Запрос «немецкий» перенаправляется сюда; см. также другие значения. Немецкий язык Немецкий как официальный язык Самоназвание Deutsch Страны Германия, Австрия, Лихтенштейн, Швейцария, Бельгия, Италия, Люксембург, Россия и ещё 36 стран Официальный статус Германия Австрия Ли�...

Cookbook by William Augustus Henderson The Housekeeper's Instructor Title page of 14th edition, 1807AuthorWilliam Augustus HendersonLater editions revised by Jacob Christopher SchnebbelieSubjectEnglish cookingGenreCookeryPublisherW. & J. StratfordPublication date1791[1]Publication placeEnglandPages384 The Housekeeper's Instructor was a bestselling English cookery book written by William Augustus Henderson, 1791. It ran through seventeen editions by 1823. Later editions were revise...

 

Advisory committee charged with the preservation of the White House The White House Red Room before refurbishment during the administration of Bill Clinton. The Committee for the Preservation of the White House is an advisory committee charged with the preservation of the White House, the official home and principal workplace of the president of the United States. The committee is largely made up of citizens appointed by the president for their experience with historic preservation, architect...

 

Tập quán và quy định cho giờ mua sắm (thời gian cửa hàng mở cửa) khác nhau tùy theo từng quốc gia. Ngày mua sắm và tác động của ngày lễ Một số quốc gia, đặc biệt là những quốc gia có dân số hoặc lịch sử chủ yếu là Kitô giáo không cho phép mua sắm vào Chủ nhật. Ở các nước Hồi giáo, một số cửa hàng đóng cửa vào thứ Sáu để cầu nguyện vào buổi trưa. Ở Israel, nhiều cửa hàng �...

摩爾多瓦政治地圖 摩爾多瓦衛星地圖,拍攝于2003年9月 摩爾多瓦地形 摩爾多瓦位於歐洲東南部,在西部和羅馬尼亞接壤,在東部和南部和烏克蘭接壤。摩爾多瓦領土的大部份地區位於兩條河流之間——普魯特河和德涅斯特河。摩爾多瓦的北部地區地勢較高,大多數地區都是丘陵。摩爾多瓦的國土面積是33,843平方公里。摩爾多瓦大多數地區的土壤都是黑土,許多都被開墾進行...

 

Questa voce sull'argomento centri abitati della Cumbria è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Cleator Moorparrocchia civileCleator Moor – Veduta LocalizzazioneStato Regno Unito    Inghilterra RegioneNord Ovest Contea Cumbria DistrettoCopeland TerritorioCoordinate54°31′N 3°30′W54°31′N, 3°30′W (Cleator Moor) Abitanti6 963 (2001) Altre informazioniCod. postaleCA25 Prefisso01946 Fuso orarioU...