Share to: share facebook share twitter share wa share telegram print page

Rayleigh wave

Rayleigh waves are a type of surface acoustic wave that travel along the surface of solids. They can be produced in materials in many ways, such as by a localized impact or by piezo-electric transduction, and are frequently used in non-destructive testing for detecting defects. Rayleigh waves are part of the seismic waves that are produced on the Earth by earthquakes. When guided in layers they are referred to as Lamb waves, Rayleigh–Lamb waves, or generalized Rayleigh waves.

Characteristics

Particle motion of a Rayleigh wave.
Comparison of the Rayleigh wave speed with shear and longitudinal wave speeds for an isotropic elastic material. The speeds are shown in dimensionless units.

Rayleigh waves are a type of surface wave that travel near the surface of solids. Rayleigh waves include both longitudinal and transverse motions that decrease exponentially in amplitude as distance from the surface increases. There is a phase difference between these component motions.[1]

The existence of Rayleigh waves was predicted in 1885 by Lord Rayleigh, after whom they were named.[2] In isotropic solids these waves cause the surface particles to move in ellipses in planes normal to the surface and parallel to the direction of propagation – the major axis of the ellipse is vertical. At the surface and at shallow depths this motion is retrograde, that is the in-plane motion of a particle is counterclockwise when the wave travels from left to right. At greater depths the particle motion becomes prograde. In addition, the motion amplitude decays and the eccentricity changes as the depth into the material increases. The depth of significant displacement in the solid is approximately equal to the acoustic wavelength. Rayleigh waves are distinct from other types of surface or guided acoustic waves such as Love waves or Lamb waves, both being types of guided waves supported by a layer, or longitudinal and shear waves, that travel in the bulk.

Rayleigh waves have a speed slightly less than shear waves by a factor dependent on the elastic constants of the material.[1] The typical speed of Rayleigh waves in metals is of the order of 2–5 km/s, and the typical Rayleigh speed in the ground is of the order of 50–300 m/s for shallow waves less than 100-m depth and 1.5–4 km/s at depths greater than 1 km. Since Rayleigh waves are confined near the surface, their in-plane amplitude when generated by a point source decays only as , where is the radial distance. Surface waves therefore decay more slowly with distance than do bulk waves, which spread out in three dimensions from a point source. This slow decay is one reason why they are of particular interest to seismologists. Rayleigh waves can circle the globe multiple times after a large earthquake and still be measurably large. There is a difference in the behavior (Rayleigh wave velocity, displacements, trajectories of the particle motion, stresses) of Rayleigh surface waves with positive and negative Poisson's ratio.[3]

In seismology, Rayleigh waves (called "ground roll") are the most important type of surface wave, and can be produced (apart from earthquakes), for example, by ocean waves, by explosions, by railway trains and ground vehicles, or by a sledgehammer impact.[1][4]

Speed and dispersion

Dispersion of Rayleigh waves in a thin gold film on glass.[2]

In isotropic, linear elastic materials described by Lamé parameters and , Rayleigh waves have a speed given by solutions to the equation

where , , , and .[5] Since this equation has no inherent scale, the boundary value problem giving rise to Rayleigh waves are dispersionless. An interesting special case is the Poisson solid, for which , since this gives a frequency-independent phase velocity equal to . For linear elastic materials with positive Poisson ratio (), the Rayleigh wave speed can be approximated as , where is the shear-wave velocity.[6]

The elastic constants often change with depth, due to the changing properties of the material. This means that the velocity of a Rayleigh wave in practice becomes dependent on the wavelength (and therefore frequency), a phenomenon referred to as dispersion. Waves affected by dispersion have a different wave train shape.[1] Rayleigh waves on ideal, homogeneous and flat elastic solids show no dispersion, as stated above. However, if a solid or structure has a density or sound velocity that varies with depth, Rayleigh waves become dispersive. One example is Rayleigh waves on the Earth's surface: those waves with a higher frequency travel more slowly than those with a lower frequency. This occurs because a Rayleigh wave of lower frequency has a relatively long wavelength. The displacement of long wavelength waves penetrates more deeply into the Earth than short wavelength waves. Since the speed of waves in the Earth increases with increasing depth, the longer wavelength (low frequency) waves can travel faster than the shorter wavelength (high frequency) waves. Rayleigh waves thus often appear spread out on seismograms recorded at distant earthquake recording stations. It is also possible to observe Rayleigh wave dispersion in thin films or multi-layered structures.

In non-destructive testing

Rayleigh waves are widely used for materials characterization, to discover the mechanical and structural properties of the object being tested – like the presence of cracking, and the related shear modulus. This is in common with other types of surface waves.[7] The Rayleigh waves used for this purpose are in the ultrasonic frequency range.

They are used at different length scales because they are easily generated and detected on the free surface of solid objects. Since they are confined in the vicinity of the free surface within a depth (~ the wavelength) linked to the frequency of the wave, different frequencies can be used for characterization at different length scales.

In electronic devices

Rayleigh waves propagating at high ultrasonic frequencies (10–1000 MHz) are used widely in different electronic devices.[8] In addition to Rayleigh waves, some other types of surface acoustic waves (SAW), e.g. Love waves, are also used for this purpose. Examples of electronic devices using Rayleigh waves are filters, resonators, oscillators, sensors of pressure, temperature, humidity, etc. Operation of SAW devices is based on the transformation of the initial electric signal into a surface wave that, after achieving the required changes to the spectrum of the initial electric signal as a result of its interaction with different types of surface inhomogeneity,[9] is transformed back into a modified electric signal. The transformation of the initial electric energy into mechanical energy (in the form of SAW) and back is usually accomplished via the use of piezoelectric materials for both generation and reception of Rayleigh waves as well as for their propagation.

In geophysics

Generation from earthquakes

Because Rayleigh waves are surface waves, the amplitude of such waves generated by an earthquake generally decreases exponentially with the depth of the hypocenter (focus). However, large earthquakes may generate Rayleigh waves that travel around the Earth several times before dissipating.

In seismology longitudinal and shear waves are known as P-waves and S-waves, respectively, and are termed body waves. Rayleigh waves are generated by the interaction of P- and S- waves at the surface of the earth, and travel with a velocity that is lower than the P-, S-, and Love wave velocities. Rayleigh waves emanating outward from the epicenter of an earthquake travel along the surface of the earth at about 10 times the speed of sound in air (0.340 km/s), that is ~3 km/s.

Due to their higher speed, the P- and S-waves generated by an earthquake arrive before the surface waves. However, the particle motion of surface waves is larger than that of body waves, so the surface waves tend to cause more damage. In the case of Rayleigh waves, the motion is of a rolling nature, similar to an ocean surface wave. The intensity of Rayleigh wave shaking at a particular location is dependent on several factors:

Rayleigh wave direction
  • The size of the earthquake.
  • The distance to the earthquake.
  • The depth of the earthquake.
  • The geologic structure of the crust.
  • The focal mechanism of the earthquake.
  • The rupture directivity of the earthquake.

Local geologic structure can serve to focus or defocus Rayleigh waves, leading to significant differences in shaking over short distances.

In seismology

Low frequency Rayleigh waves generated during earthquakes are used in seismology to characterise the Earth's interior. In intermediate ranges, Rayleigh waves are used in geophysics and geotechnical engineering for the characterisation of oil deposits. These applications are based on the geometric dispersion of Rayleigh waves and on the solution of an inverse problem on the basis of seismic data collected on the ground surface using active sources (falling weights, hammers or small explosions, for example) or by recording microtremors. Rayleigh ground waves are important also for environmental noise and vibration control since they make a major contribution to traffic-induced ground vibrations and the associated structure-borne noise in buildings.

Possible animal reaction

Low frequency (< 20 Hz) Rayleigh waves are inaudible, yet they can be detected by many mammals, birds, insects and spiders. Humans should be able to detect such Rayleigh waves through their Pacinian corpuscles, which are in the joints, although people do not seem to consciously respond to the signals. Some animals seem to use Rayleigh waves to communicate. In particular, some biologists theorize that elephants may use vocalizations to generate Rayleigh waves. Since Rayleigh waves decay slowly, they should be detectable over long distances.[10] Note that these Rayleigh waves have a much higher frequency than Rayleigh waves generated by earthquakes.

After the 2004 Indian Ocean earthquake, some people have speculated that Rayleigh waves served as a warning to animals to seek higher ground, allowing them to escape the more slowly traveling tsunami. At this time, evidence for this is mostly anecdotal. Other animal early warning systems may rely on an ability to sense infrasonic waves traveling through the air.[11]

See also

References

  1. ^ a b c d Telford, William Murray; Geldart, L. P.; Robert E. Sheriff (1990). Applied geophysics. Cambridge University Press. p. 149. ISBN 978-0-521-33938-4. Retrieved 8 June 2011.
  2. ^ [1][dead link] "On Waves Propagated along the Plane Surface of an ElasticSolid", Lord Rayleigh, 1885
  3. ^ Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S. (2014). "Rayleigh and Love surface waves in isotropic media with negative Poisson's ratio". Mechanics of Solids. 49 (4): 422–434. Bibcode:2014MeSol..49..422G. doi:10.3103/S0025654414040074. S2CID 121607244.
  4. ^ Longuet-Higgins, M. S. (27 September 1950). "A Theory of the Origin of Microseisms". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 243 (857). The Royal Society: 1–35. Bibcode:1950RSPTA.243....1L. doi:10.1098/rsta.1950.0012. ISSN 1364-503X. S2CID 31828394.
  5. ^ Landau, L.D.; Lifshitz, E. M. (1986). Theory of Elasticity (3rd ed.). Oxford, England: Butterworth Heinemann. ISBN 978-0-7506-2633-0.
  6. ^ L. B. Freund (1998). Dynamic Fracture Mechanics. Cambridge University Press. p. 83. ISBN 978-0521629225.
  7. ^ Thompson, Donald O.; Chimenti, Dale E. (1 June 1997). Review of progress in quantitative nondestructive evaluation. Springer. p. 161. ISBN 978-0-306-45597-1. Retrieved 8 June 2011.
  8. ^ Oliner, A.A., ed. (1978). Acoustic Surface Waves. Springer. ISBN 978-3540085751.
  9. ^ Biryukov, S.V.; Gulyaev, Y.V.; Krylov, V.V.; Plessky, V.P. (1995). Surface Acoustic Waves in Inhomogeneous Media. Springer. ISBN 978-3-642-57767-3.
  10. ^ O’Connell-Rodwell, C.E.; Arnason, B.T.; Hart, L.A. (14 September 2000). "Seismic properties of Asian elephant (Elephas maximus) vocalizations and locomotion". J. Acoust. Soc. Am. 108 (6): 3066–3072. Bibcode:2000ASAJ..108.3066O. doi:10.1121/1.1323460. PMID 11144599.
  11. ^ Kenneally, Christine (30 December 2004). "Surviving the Tsunami". www.slate.com. Retrieved 26 November 2013.

Further reading

  • Viktorov, I.A. (2013) "Rayleigh and Lamb Waves: Physical Theory and Applications", Springer; Reprint of the original 1st 1967 edition by Plenum Press, New York. ISBN 978-1489956835.
  • Aki, K. and Richards, P. G. (2002). Quantitative Seismology (2nd ed.). University Science Books. ISBN 0-935702-96-2.
  • Fowler, C. M. R. (1990). The Solid Earth. Cambridge, UK: Cambridge University Press. ISBN 0-521-38590-3.
  • Lai, C.G., Wilmanski, K. (Eds.) (2005). Surface Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks Series: CISM International Centre for Mechanical Sciences, Number 481, Springer, Wien, ISBN 978-3-211-27740-9
  • Sugawara, Y.; Wright, O. B.; Matsuda, O.; Takigahira, M.; Tanaka, Y.; Tamura, S.; Gusev, V. E. (18 April 2002). "Watching Ripples on Crystals". Physical Review Letters. 88 (18). American Physical Society (APS): 185504. Bibcode:2002PhRvL..88r5504S. doi:10.1103/physrevlett.88.185504. hdl:2115/5791. ISSN 0031-9007. PMID 12005696.

Read other articles:

GBR-12783 Names Preferred IUPAC name 1-[2-(Diphenylmethoxy)ethyl]-4-[(2E)-3-phenylprop-2-en-1-yl]piperazine Identifiers CAS Number 145428-33-7 Y67469-57-2 (non-specific) Y 3D model (JSmol) Interactive image ChEBI CHEBI:92594 ChEMBL ChEMBL1612198 ChemSpider 4702243 PubChem CID 5788723 UNII 96Y892TJ2A Y CompTox Dashboard (EPA) DTXSID2043741 InChI InChI=1S/C28H32N2O/c1-4-11-25(12-5-1)13-10-18-29-19-21-30(22-20-29)23-24-31-28(26-14-6-2-7-15-26)27-16-8-3-9-17-27/h1-17,28H,18-24H2/…

Минский областной суд. Дом правосудия в Минске. Уровень преступности по районам Республики Беларусь (преступлений на 100 000 человек; 2014 год).     >1500     1000—1499     750—999     <750 Преступность в Республике Беларусь складывается …

Konstantin Ivanovich ProvalovNama asliКонстантин Иванович ПроваловLahir11 Juni 1906Desa Babushkino, Balagansky Uyezd, Kegubernuran Irkutsk, Kekaisaran RusiaMeninggal10 Desember 1981Moskwa, Uni SovietDikebumikanPemakaman NovodevichyPengabdian Uni SovietDinas/cabangAngkatan Darat Uni SovietLama dinas1928–1981PangkatKolonel jenderalPerang/pertempuranKonflik Tiongkok-Soviet (1929) Pertempuran Danau Khasan Perang Dunia II Pertempuran Kaukasus Operasi Kerch-Eltige…

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2019) هو عملية يكرر فيها الطلاب نفس الصف بسبب  إخفاقهم في السنة السابقة، ويمكن لهؤلاء الطلاب أن يعيدوا السنة مرة واحدة فقط ولمدة سنة واحدة[1]، ولا يعيد الطلاب…

Staatswappen der Deutschen Demokratischen Republik Die Kommunalwahlen in der DDR 1989 fanden am 7. Mai 1989 statt. Es wurden die Volksvertreter in Gemeinden, Städten und Kreisen gewählt. Es war die letzte Wahl in der DDR, die nach Einheitslisten der Nationalen Front stattfand. Nach der Wahl konnte der Staatsführung Wahlfälschung nachgewiesen werden. Inhaltsverzeichnis 1 Vor der Wahl 2 Wahlsystem 3 Offizielles Ergebnis 4 Fälschung 5 Folgen 6 Juristische Aufarbeitung 7 Literatur 8 Weblinks 9 …

Undang-Undang Energi Atom 1946Judul lengkapUndang-Undang untuk pengembangan dan kontrol energi atomDisahkan olehKongres Amerika Serikat ke-79KutipanPublic lawPub.L. 79-585Statutes at Largech. 724, 60 Stat. 755Riwayat legislatifDiajukan di Senat dengan nama S. 1717 oleh Brien McMahon (D-CT) pada tanggal 20 Desember 1945Disetujui Senat pada tanggal 1 Juni 1946 (unanimous consent)Disetujui Dewan pada tanggal 20 Juli 1946 (265–79)Ditandatangani Presiden Harry S. Truman pad…

Part of a series onJehovah's Witnesses Overview Organizational structure Governing Body Watch Tower Bibleand Tract Society Corporations History Bible Student movement Leadership dispute Splinter groups Doctrinal development Unfulfilled predictions Demographics By country BeliefsPractices SalvationEschatology The 144,000 Faithful and discreet slave HymnsGod's name BloodDiscipline Literature The WatchtowerAwake! New World Translation List of publications Bibliography Teaching programs Kingdom Hall…

Behavior of projectiles in flight This schlieren image of a bullet travelling in free-flight demonstrates the air-pressure dynamics surrounding the bullet. External ballistics or exterior ballistics is the part of ballistics that deals with the behavior of a projectile in flight. The projectile may be powered or un-powered, guided or unguided, spin or fin stabilized, flying through an atmosphere or in the vacuum of space, but most certainly flying under the influence of a gravitational field. …

American experimental band For other uses, see Xiu Xiu (disambiguation). Xiu XiuAngela Seo (left) and Jamie Stewart (right) performing with Xiu Xiu in 2010Background informationOriginSan Jose, California, U.S.GenresExperimental rockart rocknoise popelectronicpost-punkavant-popart popYears active2002–presentLabelsPolyvinylUpset the RhythmBella Union5 Rue ChristineAbsolutely KosherFree Porcupine SocietyKill Rock StarsSpinoffsXXLMembers Jamie Stewart Angela Seo David Kendrick Past members Cory Mc…

Kabupaten Kepulauan Siau Tagulandang BiaroKabupaten LambangJulukan: Bumi KaramandoMotto: Bahasa Siau = Pakatiti Tuhema, Pakanandu Mangena, Boleng Balang SingkahindoBerkat Tuhan, Bersama Masyarakat, Membangun BersamaPetaKabupaten Kepulauan Siau Tagulandang BiaroPetaTampilkan peta SulawesiKabupaten Kepulauan Siau Tagulandang BiaroKabupaten Kepulauan Siau Tagulandang Biaro (Indonesia)Tampilkan peta IndonesiaKoordinat: 2°21′N 125°25′E / 2.35°N 125.42°E / 2.3…

Institut technique et scientifique de l'abeille et de la pollinisationHistoireFondation 2009CadrePays  FranceCoordonnées 43° 54′ 55″ N, 4° 52′ 42″ EOrganisationSite web itsap.asso.frmodifier - modifier le code - modifier Wikidata L’Institut technique et scientifique de l'apiculture et de la pollinisation (ITSAP-Institut de l'abeille) est un organisme français mis en place en octobre 2009 à la suite, notamment, du rapport de 2008 du député Marti…

Опис логотип стипендіальної програми Завтра.UA Джерело http://pinchukfund.org/zavtra/uk/ Час створення невідомо Автор зображення невідомо Ліцензія Ця робота є невільною — тобто, не відповідає визначенню вільних творів культури. Згідно з рішенням фонду «Вікімедіа» від 23 березня 2007 …

For the parlance formed from the Indian epic poem Ramayana, see Lakshmana rekha. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lakshmana Rekha film – news · newspapers · books · scholar · JSTOR (September 2022) (Learn how and when to remove this template message) 1984 Indian filmLakshmana RekhaPosterDire…

SyednaAali Qadr Mufaddal SaifuddinDā'ī al-Mutlaq Dawoodi Bohra ke-53عـالي قـدر مُـفـضّـل سـيـفُ ٱلـدّينDa'i al-MutlaqPetahanaMulai menjabat 17 Januari 2014PendahuluMohammed BurhanuddinPenggantiPetahana GelarSyednaDa'i al-FatemiDa'i al-MutlaqAqeeq al-Yemen[1]Nama lainAbu Ja'far al-Sadiq (Kunya)Saifuddin (Laqab)Informasi pribadiLahirAali Qadr Mufaddal20 Agustus 1946 (umur 77)[1]Surat, Kepresidenan Bombay, India Britania[1]AgamaIslam…

Sculpture by Paul Manship in Manhattan, New York PrometheusThe sculpture in 2013ArtistPaul ManshipYear1934 (1934)TypeSculptureMediumBronzeDimensions5.5 m (18 ft)LocationNew York City, New York, United StatesCoordinates40°45′31″N 73°58′43″W / 40.75872°N 73.97859°W / 40.75872; -73.97859 Prometheus is a 1934 gilded, cast bronze sculpture by Paul Manship, located above the lower plaza at Rockefeller Center in Manhattan, New York City.[1]…

Professional wrestling tag team Team 3D redirects here. For the competitive video game team also known as Team 3D, see 3D.NY. For the Halo team, see Final Boss (Halo team). Professional wrestling tag team The Dudley BoyzD-Von and Bubba Ray making the 3D taunt (index finger and thumb forming the lower part of a 'd', the middle finger forming the upper part of the 'd' while also representing the number 3 along with the two remaining digits)Tag teamMembersBuh Buh Ray Dudley / Bubba Ray Dudley / Bro…

Defunct large engineering, procurement and construction (EPC) company This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Chicago Bridge & Iron Company – news · newspapers …

Tambang kapur yang dikenal dengan nama Bukit Jaddih di Desa Jaddih, Kecamatan Socah, Kabupaten Bangkalan, Jawa Timur The Needles, terletak di Isle of Wight, adalah bagian dari Southern England Chalk Formation. Pabrik kapur di Tagogapu, Padalarang, Bandung Barat pada tahun 1920-an Kapur adalah material yang berasal dari batuan sedimen berwarna putih dan halus yang terutama tersusun dari mineral kalsium. Tiga senyawa utama yang mewujudkan kapur adalah kalsium karbonat (mendominasi gamping dan kapu…

FCヴィクトリア・プルゼニ原語表記 Football Club Viktoria Plzeň a.s.愛称 Viktorkaクラブカラー     青・    赤創設年 1911年所属リーグ フォルトゥナ・リガ所属ディビジョン 1部ホームタウン プルゼニホームスタジアム トゥサン・アレナ収容人数 11,722代表者 アドルフ・シャーデク監督 ミハル・ビーレク公式サイト 公式サイト ホームカラー アウェイカラー サ…

КЗ КОР Меморіальний музей К. Г. Стеценка 50°06′25″ пн. ш. 29°48′15″ сх. д. / 50.10710948914302065° пн. ш. 29.80424540664545674° сх. д. / 50.10710948914302065; 29.80424540664545674Координати: 50°06′25″ пн. ш. 29°48′15″ сх. д. / 50.10710948914302065° пн. ш. 29.80424540664545674° сх. …

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 18.218.188.227